Publications by authors named "M G Kotresh"

Herein we report, the effect of solvents on absorption and fluorescence spectra of Alexa Fluor-350 labelled fluorescent dye examined both experimentally and computationally. The steady state absorption and fluorescence measurements are carried out in a series of solvents to explore their solvatochromism and to determine its dipole moments. To this end, different empirical solvatochromic models like Bilot-Kawaski, Lippert-Mataga, Bakhshiev, Kawaski-Chamma-Viallet and Reichardt models are assessed against Alexa Fluor 350 dye to determine the singlet excited and ground state dipole moments.

View Article and Find Full Text PDF

In this paper, a systematic investigation of the interaction of bovine serum albumin (BSA) with water-soluble CdTe quantum dots (QDs) of two different sizes capped with carboxylic thiols is presented based on steady-state and time-resolved fluorescence measurements. Efficient Förster resonance energy transfer (FRET) was observed to occur from BSA donor to CdTe acceptor as noted from reduction in the fluorescence of BSA and enhanced fluorescence from CdTe QDs. FRET parameters such as Förster distance, spectral overlap integral, FRET rate constant and efficiency were determined.

View Article and Find Full Text PDF

This article highlights some physical studies on the relaxation dynamics and Förster resonance energy transfer (FRET) of semiconductor quantum dots (QDs) to proximal dye molecule and the way these phenomena change with core to core-shell QD is discussed. Efforts to understand the optical and carrier relaxation dynamics of CdSe and CdSe/ZnS QDs are made by using absorption, steady-state fluorescence and time-resolved fluorescence (TCSPC) techniques. Steady-state as well as time-resolved fluorescence measurements were employed to evaluate the QD PL quenching induced by the proximal Rhodamine 101 dye molecule and to examine the influence of deep trap states on energy transfer efficiency.

View Article and Find Full Text PDF

We present here a systematic investigation on the interaction between a water-soluble alloyed semiconductor quantum dot and bovine serum albumin using various spectroscopic techniques i.e. fluorescence quenching, resonance light scattering and synchronous fluorescence spectroscopy.

View Article and Find Full Text PDF

Quantum dots (QDs), bright luminescent semiconductor nanoparticles, have found numerous applications ranging from optoelectronics to bioimaging. Here, we present a systematic investigation of fluorescence resonance energy transfer (FRET) from hydrophilic ternary alloyed quantum dots (CdSeS/ZnS) to cresyl violet dye with a view to explore the effect of composition of QD donors on FRET efficiency. Fluorescence emission of QD is controlled by varying the composition of QD without altering the particle size.

View Article and Find Full Text PDF