Publications by authors named "M G Cotticelli"

Friedreich's ataxia (FRDA) is a multisystem, autosomal recessive disorder caused by mutations in the frataxin () gene. As FRDA is considered an FXN deficiency disorder, numerous therapeutic approaches in development or clinical trials aim to supplement FXN or restore endogenous expression. These include gene therapy, protein supplementation, genome editing or upregulation of transcription.

View Article and Find Full Text PDF

Friedreich ataxia, the most common hereditary ataxia, is a neuro- and cardio-degenerative disorder caused, in most cases, by decreased expression of the mitochondrial protein frataxin. Cardiomyopathy is the leading cause of premature death. Frataxin functions in the biogenesis of iron-sulfur clusters, which are prosthetic groups that are found in proteins involved in many biological processes.

View Article and Find Full Text PDF

Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a triplet guanine-adenine-adenine (GAA) repeat expansion in intron 1 of the FXN gene, which leads to decreased levels of the frataxin protein. Frataxin is involved in the formation of iron-sulfur (Fe-S) cluster prosthetic groups for various metabolic enzymes. To provide a better understanding of the metabolic status of patients with FRDA, here we used patient-derived fibroblast cells as a surrogate tissue for metabolic and lipidomic profiling by liquid chromatography-high resolution mass spectrometry.

View Article and Find Full Text PDF

Friedreich ataxia (FRDA) is an inherited neurodegenerative disorder for which there is no cure or approved treatment. It is characterized by the loss or impaired activity of frataxin protein, which is involved in the biogenesis of iron-sulfur clusters. Our previous studies suggested that cell death in FRDA may involve ferroptosis, an iron-dependent form of cell death requiring lipid peroxidation.

View Article and Find Full Text PDF

Friedreich ataxia (FRDA) is a progressive neuro- and cardio-degenerative disorder characterized by ataxia, sensory loss, and hypertrophic cardiomyopathy. In most cases, the disorder is caused by GAA repeat expansions in the first introns of both alleles of the gene, resulting in decreased expression of the encoded protein, frataxin. Frataxin localizes to the mitochondrial matrix and is required for iron-sulfur-cluster biosynthesis.

View Article and Find Full Text PDF