Publications by authors named "M G Cole"

Rapidly learning new tasks, such as using new technology or playing a new game, is ubiquitous in our daily lives. Previous studies suggest that our brain relies on different networks for rapid task learning versus retrieving known tasks from memory, and behavioral studies have shown that novel versus practiced tasks may rely on different task configuration processes. Here, we investigated whether explicitly informing about the novelty of an incoming task would help participants prepare for different task configuration processes, such as pre-adjusting working memory gating functions.

View Article and Find Full Text PDF

Task-free brain activity affords unique insight into the functional structure of brain network dynamics and has been used to identify neural markers of individual differences. In this work, we present an algorithmic optimization framework that directly inverts and parameterizes brain-wide dynamical-systems models involving hundreds of interacting neural populations, from single-subject M/EEG time-series recordings. This technique provides a powerful neurocomputational tool for interrogating mechanisms underlying individual brain dynamics ("precision brain models") and making quantitative predictions.

View Article and Find Full Text PDF

Rationale: Postpartum haemorrhage (PPH), defined as a blood loss of 500 mL or more within 24 hours of birth, is the leading global cause of maternal morbidity and mortality. Allogenic blood transfusions are a critical component of PPH management, yet are often unfeasible, particularly in resource-poor settings where maternal morbidity is highest. Autologous cell salvage in the management of PPH has been proposed to combat limitations in access to allogenic blood and potential transfusion-related risks.

View Article and Find Full Text PDF

Sirtuins (SIRTs), nicotine adenine dinucleotide (+)-dependent histone deacetylases, have emerged as critical regulators in many signalling pathways involved in a wide range of biological processes. Currently, seven mammalian SIRTs have been characterized and are found across a number of cellular compartments. There has been considerable interest in the role of SIRTs in the brain due to their role in a plethora of metabolic- and age-related diseases, including their involvement in learning and memory function in physiological and pathophysiological conditions.

View Article and Find Full Text PDF