A comprehensive analysis of everyday sound perception can be achieved using electroencephalography (EEG) with the concurrent acquisition of information about the environment. While extensive research has been dedicated to speech perception, the complexities of auditory perception within everyday environments, specifically the types of information and the key features to extract, remain less explored. Our study aims to systematically investigate the relevance of different feature categories: discrete sound-identity markers, general cognitive state information, and acoustic representations, including discrete sound onset, the envelope, and mel-spectrogram.
View Article and Find Full Text PDFSurgical personnel face various stressors in the workplace, including environmental sounds. Mobile electroencephalography (EEG) offers a promising approach for objectively measuring how individuals perceive sounds. Because surgical performance does not necessarily decrease with higher levels of distraction, EEG could help guide noise reduction strategies that are independent of performance measures.
View Article and Find Full Text PDFIntroduction: In demanding work situations (e.g., during a surgery), the processing of complex soundscapes varies over time and can be a burden for medical personnel.
View Article and Find Full Text PDF. Mobile ear-EEG provides the opportunity to record EEG unobtrusively in everyday life. However, in real-life, the EEG data quickly becomes difficult to interpret, as the neural signal is contaminated by other, non-neural signal contributions.
View Article and Find Full Text PDF