Publications by authors named "M G Bisogni"

Purpose: Carbon ion therapy treatments can be monitored non-invasively with in-beam Positron Emission Tomography (PET). At CNAO the INSIDE in-beam PET scanner has been used in a clinical trial (NCT03662373) to monitor cancer treatments with proton and carbon therapy. In this work we present the analysis results of carbon therapy data, acquired during the first phase of the clinical trial, analyzing data of nine patients treated at CNAO for various malignant tumors in the head-and-neck region.

View Article and Find Full Text PDF

This paper reports the development of dosimeters based on plastic scintillating fibers imaged by a charge-coupled device camera, and their performance evaluation through irradiations with the electron Flash research accelerator located at the Centro Pisano Flash Radiotherapy. The dosimeter prototypes were composed of a piece of plastic scintillating fiber optically coupled to a clear optical fiber which transported the scintillation signal to the readout systems (an imaging system and a photodiode). The following properties were tested: linearity, capability to reconstruct the percentage depth dose curve in solid water and to sample in time the single beam pulse.

View Article and Find Full Text PDF
Article Synopsis
  • In-beam Positron Emission Tomography (PET) serves as a non-invasive method for monitoring treatment effects during proton therapy, focusing on challenges in clinical interpretation of anatomical changes.
  • This study examines the suitability of gamma-index analysis, commonly used for dose comparisons, to assess changes in in-beam PET distributions, particularly in head-and-neck patients.
  • Findings indicate that gamma-index analysis effectively identifies anatomical changes, with specific tolerance values established for accurate comparisons, highlighting the method's potential in tracking changes throughout treatment.
View Article and Find Full Text PDF

This study addresses a fundamental limitation of in-beam positron emission tomography (IB-PET) in proton therapy: the lack of direct anatomical representation in the images it produces. We aim to overcome this shortcoming by pioneering the application of deep learning techniques to create synthetic control CT images (sCT) from combining IB-PET and planning CT scan data.We conducted simulations involving six patients who underwent irradiation with proton beams.

View Article and Find Full Text PDF

In-beam PET (Positron Emission Tomography) is one of the most precise techniques for in-vivo range monitoring in hadron therapy. Our objective was to demonstrate the feasibility of a short irradiation run for range verification before a carbon-ion treatment. To do so a PMMA target was irradiated with a 220 MeV/u carbon-ion beam and annihilation coincidences from short-lived positron emitters were acquired after irradiations lasting 0.

View Article and Find Full Text PDF