Most clinical isolates of both and show the capacity to adhere to abiotic surfaces and to develop biofilms resulting in a contribution to chronic human skin infections. Antibiotic resistance and poor biofilm penetration are the main causes of ineffective therapeutic treatment in killing bacteria within biofilms. A possible strategy could be represented by drug delivery systems, such as nanoemulsions (composed of bioactive oil, surfactant and water phase), which are useful for enhancing the drug permeation of a loaded drug inside the biofilm and its activity.
View Article and Find Full Text PDFMosquito saliva plays a crucial physiological role in both sugar and blood feeding by helping sugar digestion and exerting antihemostatic functions. During meal acquisition, mosquitoes are exposed to the internalization of external microbes. Since mosquitoes reingest significant amounts of saliva during feeding, we hypothesized that salivary antimicrobial components may participate in the protection of mouthparts, the crop, and the gut by inhibiting bacterial growth.
View Article and Find Full Text PDFUrinary tract infections (UTIs) are the most common bacterial infections and uropathogenic Escherichia coli (UPEC) is the main etiological agent of UTIs. UPEC can persist in bladder cells protected by immunological defenses and antibiotics and intracellular behavior leads to difficulty in eradicating the infection. The aim of this paper is to design, prepare and characterize surfactant-based nanocarriers (niosomes) able to entrap antimicrobial drug and potentially to delivery and release antibiotics into UPEC-infected cells.
View Article and Find Full Text PDFThe peptidyl-prolyl cis/trans isomerase Pin1 positively regulates numerous cancer-driving pathways, and it is overexpressed in several malignancies, including high-grade serous ovarian cancer (HGSOC). The findings that all-trans retinoic acid (ATRA) induces Pin1 degradation strongly support that ATRA treatment might be a promising approach for HGSOC targeted therapy. Nevertheless, repurposing ATRA into the clinics for the treatment of solid tumors remains an unmet need mainly due to the insurgence of resistance and its ineffective delivery.
View Article and Find Full Text PDF(Mabs) is a dangerous non-tubercular mycobacterium responsible for severe pulmonary infections in immunologically vulnerable patients, due to its wide resistance to many different antibiotics which make its therapeutic management extremely difficult. Drug nanocarriers as liposomes may represent a promising delivery strategy against pulmonary Mabs infection, due to the possibility to be aerosolically administrated and to tune their properties in order to increase nebulization resistance and retainment of encapsulated drug. In fact, liposome surface can be modified by decoration with mucoadhesive polymers to enhance its stability, mucus penetration and prolong its residence time in the lung.
View Article and Find Full Text PDF