Publications by authors named "M Fromant"

Prokaryotic adaptive immunity relies on the capture of fragments of invader DNA (protospacers) followed by their recombination at a dedicated acceptor DNA locus. This integrative mechanism, called adaptation, needs both Cas1 and Cas2 proteins. Here, we studied in vitro the binding of an Escherichia coli Cas1-Cas2 complex to various protospacer and acceptor DNA molecules.

View Article and Find Full Text PDF

In a cell, peptidyl-tRNA molecules that have prematurely dissociated from ribosomes need to be recycled. This work is achieved by an enzyme called peptidyl-tRNA hydrolase. To characterize the RNA-binding site of Escherichia coli peptidyl-tRNA hydrolase, minimalist substrates inspired from tRNA(His) have been designed and produced.

View Article and Find Full Text PDF

Escherichia coli peptidyl-tRNA hydrolase activity is inhibited by 3'-(L-[N,N-diacetyl-lysinyl)amino-3'-deoxyadenosine, a stable mimic of the minimalist substrate 2'(3')-O-(L-[N,N-diacetyl-lysinyl)adenosine. The complex of this mimic with the enzyme has been analyzed by NMR spectroscopy, enabling experimental mapping of the catalytic center for the first time. Chemical shift variations point out the sensitivity of residues Asn10, Met67, Asn68, Gly111, Asn114, Leu116, Lys117, Gly147, Phe148, and Val149 to complex formation.

View Article and Find Full Text PDF

2D images of label-free biochips exploiting resonant waveguide grating (RWG) are presented. They indicate sensitivities on the order of 1 pg/mm2 for proteins in air, and hence 10 pg/mm2 in water can be safely expected. A 320x256 pixels Aluminum-Gallium-Nitride-based sensor array is used, with an intrinsic narrow spectral window centered at 280 nm.

View Article and Find Full Text PDF

This work describes an ultraviolet biosensing technique based on specific molecular absorption detected with a previously developed spectrally selective aluminum gallium nitride (AlGaN) based detector. Light absorption signal of DNA and proteins, respectively at 260 nm and 280 nm, is used to image biochips. To allow detection of protein or DNA monolayers at the surface of a biochip, we develop contrast-enhancing multilayer substrates.

View Article and Find Full Text PDF