Extraction of soil samples with dilute CaCl solution in a routinely performed batch test has potential to be used in site-specific assessment of ecotoxicological risks at metal-contaminated sites. Soil extracts could potentially give a measure of the concentration of bioavailable metals in the soil solution, thereby including effects of soil properties and contaminant "aging." We explored the possibility of using a 0.
View Article and Find Full Text PDFObjectives: Most COVID-19 related infections and deaths may occur in healthcare outside hospitals. Here we explored SARS-CoV-2 infections among healthcare workers (HCWs) in this setting.
Design: All healthcare providers in Stockholm, Sweden were asked to recruit HCWs at work for a study of past or present SARS-CoV-2 infections among HCWs.
Soil pollution constitutes one of the major threats to public health, where spreading to groundwater is one of several critical aspects. In most internationally adopted frameworks for routine risk assessments of contaminated land, generic models and soil guideline values are cornerstones. In order to protect the groundwater at contaminated sites, a common practice worldwide today is to depart from health risk-based limit concentrations for groundwater, and use generic soil-to-groundwater spreading models to back-calculate corresponding equilibrium levels (concentration limits) in soil, which must not be exceeded at the site.
View Article and Find Full Text PDFHeavy metal and metalloid contamination of topsoils from atmospheric deposition and release from landfills, agriculture, and industries is a widespread problem that is estimated to affect >50% of the EU's land surface. Influx of contaminants from soil to groundwater and their further downstream spread and impact on drinking water quality constitute a main exposure risk to humans. There is increasing concern that the present contaminant loading of groundwater and surface water systems may be altered, and potentially aggravated, by ongoing climate change, through large-scale impacts on recharge and groundwater levels.
View Article and Find Full Text PDFRisks associated with metal contaminated sites are tightly linked to material leachability and contaminant mobility. In this study, metal solubility and transport were characterized within a glass waste landfill through i) lysimeter-collection of pore water and standardized batch leaching tests, ii) soil profiles extending from the landfill surface, through unsaturated soil underneath, and into the groundwater zone, and iii) groundwater samples upstream, at, and downstream of the landfill. The soil analyzes targeted both pseudo-total and geochemically active concentrations of contaminant metals (As, Cd, Pb, Sb) and basic soil geochemistry (pH, org.
View Article and Find Full Text PDF