Endosomal coats incorporate membrane-binding subunits such as sorting nexin (SNX) proteins. The SNX-BAR paralogs Vin1 and Vps5 are respective subunits of the endosomal VINE and retromer complexes whose dimerizing BAR domains are required for complex assembly and membrane association. However, a degree of promiscuity is predicted for yeast BAR-BAR pairings, and recent work has implicated the unstructured N-terminal domains of Vin1 and Vps5 in coat formation.
View Article and Find Full Text PDFMembrane trafficking pathways perform important roles in establishing and maintaining the endosomal network. Retrograde protein sorting from the endosome is promoted by conserved SNX-BAR-containing coat complexes including retromer which enrich cargo at tubular microdomains and generate transport carriers. In metazoans, retromer cooperates with VARP, a conserved VPS9-domain GEF, to direct an endosomal recycling pathway.
View Article and Find Full Text PDFCurr Opin Cell Biol
June 2022
The endolysosomal network consists of highly dynamic membrane-bound compartments that control subcellular degradative and recycling processes. A conserved family of endosomal coat complexes known as SNX-BARs drive the formation of tubular membrane transport carriers for cargo retrieval. Whereas SNX1-related SNX-BARs were previously thought to rely on their association with the retromer complex to recognize cargo, recent work shows this class of SNX-BARs can directly bind and deliver cargo.
View Article and Find Full Text PDFMol Psychiatry
June 2023
Despite the belief that cannabis is relatively harmless, exposure during adolescence is associated with increased risk of developing several psychopathologies in adulthood. In addition to the high levels of use amongst teenagers, the potency of ∆-9-tetrahydrocannabinol (THC) has increased more than fourfold compared to even twenty years ago, and it is unclear whether potency influences the presentation of THC-induced behaviors. Expanded knowledge about the impact of adolescent THC exposure, especially high dose, is important to delineating neural networks and molecular mechanisms underlying psychiatric risk.
View Article and Find Full Text PDFWe used error-prone PCR to generate mutations in a subtilisin protease-encoding gene, and screened for recombinants that expressed temperature-sensitive (TS) variants. From the dozens of mutations that we detected in the recombinant genes we found that those mutations that affected aspartate-75 had the most profound effect on temperature stability. We thus focused our analysis on two variants of subtilisin C, the more heat-sensitive variant 24 (V24), with amino acid changes D75G, L234M and Q274P; and variant 25 (V25), with a single amino acid change, D75A.
View Article and Find Full Text PDF