Publications by authors named "M Freiberger"

The mRNA splicing machinery has been estimated to generate 100,000 known protein-coding transcripts for 20,000 human genes (Ensembl, Sept. 2024). However, this set is expanding with the massive and rapidly growing data coming from high-throughput technologies, particularly single-cell and long-read sequencing.

View Article and Find Full Text PDF

[]Cycloparaphenylenes ([]CPPs) are strained macrocycles, comprising only sp-hybridized carbon atoms. In recent years, []CPPs have become of great research interest in the field of supramolecular chemistry since their special structure enables the formation of novel host-guest complexes. In this work, we investigate the gas-phase chemistry of noncovalent complexes of [10-12]CPP with the pristine fullerenes C and the endohedral metallofullerenes (EMFs) ScN@-C, ScN@-C and MN@-C (M = Sc, Y, Lu, Gd).

View Article and Find Full Text PDF
Article Synopsis
  • Fold-switching allows proteins to alternate between two very different shapes to control their functions.
  • Researchers have identified about 100 proteins that can do this, but determining which specific amino acids are crucial to this process is difficult.
  • By using simulations and analyzing energetic frustration, the study examined the fold-switching of RfaH and found 20 important amino acids whose frustration changes during this process, providing insights for studying other proteins with similar behavior.
View Article and Find Full Text PDF

[2]Rotaxanes offer unique opportunities for studying and modulating charge separation and energy transfer, because the mechanical bond allows the robust, yet spatially dynamic tethering of photoactive groups. In this work, we synthesized [2]rotaxane triads comprising a central (aza)[10]CPP⊃C bis-adduct complex and two zinc porphyrin stoppers to address how the movable nanohoop affects light-induced charge separation and energy transfer between the rotaxane subcomponents. We found that neither the parent nanohoop [10]CPP nor its electron-deficient analogue aza[10]CPP actively participate in charge separation.

View Article and Find Full Text PDF

Intrinsically disordered proteins (IDPs) participate in various biological processes. Interactions involving IDPs are usually dynamic and are affected by their inherent conformation fluctuations. Comprehensive characterization of these interactions based on current techniques is challenging.

View Article and Find Full Text PDF