Publications by authors named "M Freccero"

Human apolipoprotein E (APOE) is a crucial lipid transport glycoprotein involved in various biological processes, including lipid metabolism, immune response, and neurodegeneration. Elevated APOE levels are linked to poor prognosis in several cancers and increased risk of Alzheimer's disease (AD). Therefore, modulating APOE expression presents a promising therapeutic strategy for both cancer and AD.

View Article and Find Full Text PDF
Article Synopsis
  • * The text proposes a new strategy that focuses on G-quadruplex structures in the SNCA gene to effectively reduce alpha-synuclein levels, confirmed by various experiments.
  • * Research shows that certain compounds can stabilize G-quadruplexes, leading to decreased SNCA mRNA and alpha-synuclein protein, indicating a promising new approach for treating synucleinopathies.
View Article and Find Full Text PDF

Several G-quadruplex nucleic acid (G4s) ligands have been developed seeking target selectivity in the past decade. Naphthalene diimide (NDI)-based compounds are particularly promising due to their biological activity and red-fluorescence emission. Previously, we demonstrated the existence of G4s in the promoter region of parasite genomes, assessing the effectiveness of NDI-derivatives against them.

View Article and Find Full Text PDF

Human immunodeficiency virus 1 (HIV-1) therapeutic regimens consist of three or more drugs targeting different steps of the viral life cycle to limit the emergence of viral resistance. In line with the multitargeting strategy, here we conjugated a naphthalene diimide (NDI) moiety with a tetraazacycloalkane to obtain novel naphthalene diimide (NDI)-tetraazacycloalkane conjugates. The NDI inhibits the HIV-1 promoter activity by binding to LTR G-quadruplexes, and the tetraazacycloalkane mimics AMD3100, which blocks HIV entry into cells by interfering with the CXCR4 coreceptor.

View Article and Find Full Text PDF

Molecular dynamics (MD) simulations are coming of age in the study of nucleic acids, including specific tertiary structures such as G-quadruplexes. While being precious for providing structural and dynamic information inaccessible to experiments at the atomistic level of resolution, MD simulations in this field may still be limited by several factors. These include the force fields used, different models for ion parameters, ionic strengths, and water models.

View Article and Find Full Text PDF