J Biomed Mater Res B Appl Biomater
January 2025
Fabricating complex hierarchical structures mimicking natural vessels and arteries is pivotal for addressing problems of cardiovascular diseases. Various fabrication strategies have been explored to achieve this goal, each contributing unique advantages and challenges to the development of functional vascular grafts. In this study, a three-layered tubular structure resembling vascular grafts was fabricated using biocompatible and biodegradable copolymers of poly(butylene succinate) (PBS) using advanced manufacturing techniques.
View Article and Find Full Text PDFIn response to mounting global concerns such as CO emissions, environmental pollution, and the depletion of fossil resources, the field of polymer science is shifting its focus toward sustainability. This research investigates the synthesis of poly(butylene adipate)-co-(dilinoleic adipate) (PBA-DLA) copolymers using two distinct methods: bulk polycondensation and polycondensation in diphenyl ether. The objective is to assess the environmental impact, chemical structure, composition, and key properties of the resulting copolymers, with a particular emphasis on determining the viability of bulk synthesis as a more sustainable approach.
View Article and Find Full Text PDFFor the preparation of embryo transfer recipients, surgically vasectomized mice are commonly used, generated by procedures associated with pain and discomfort. Sterile transgenic strains provide a nonsurgical replacement, but their maintenance requires breeding and genotyping procedures. We have previously reported the use of naturally sterile STUSB6F1 hybrids for the production of embryo transfer recipients and found the behavior of these recipients to be indistinguishable from those generated by vasectomized males.
View Article and Find Full Text PDFBackground: Today's growing demand for advanced and sustainable polyester materials is driven by an increasing awareness of the environmental impact of traditional materials, emphasizing the need for eco-friendly alternatives. Sustainability has become central in materials development, including the biomedical area, where biobased and environmentally friendly solutions are a rapidly growing field.
Objectives: This research aims to comprehensively evaluate a new enzymatically catalyzed furan-based copolymer, poly(decamethylene furanoate)-co-(dilinoleic furanoate) (PDF-DLF), with a 70-30 wt% hard-to-soft segment ratio.