Publications by authors named "M Francki"

The challenge in establishing an early-sown wheat crop in southern Australia is the need for consistently high seedling emergence when sowing deep in subsoil moisture (>10 cm) or into dry top-soil (4 cm). However, the latter is strongly reliant on a minimum soil water availability to ensure successful seedling emergence. This study aimed to: (1) evaluate 233 Australian and selected international wheat genotypes for consistently high seedling emergence under limited soil water availability when sown in 4 cm of top-soil in field and glasshouse (GH) studies; (2) ascertain genetic loci associated with phenotypic variation using a genome-wide association study (GWAS); and (3) compare across loci for traits controlling coleoptile characteristics, germination, dormancy, and pre-harvest sprouting.

View Article and Find Full Text PDF

Septoria nodorum blotch (SNB) is a necrotrophic disease of wheat prominent in some parts of the world, including Western Australia (WA) causing significant losses in grain yield. The genetic mechanisms for resistance are complex involving multiple quantitative trait loci. In order to decipher comparable or independent regulation, this study identified the genetic control for glume compared to foliar resistance across four environments in WA against 37 different isolates.

View Article and Find Full Text PDF

The genetic control of host response to the fungal necrotrophic disease Septoria nodorum blotch (SNB) in bread wheat is complex, involving many minor genes. Quantitative trait loci (QTL) controlling SNB response were previously identified on chromosomes 1BS and 5BL. The aim of this study, therefore, was to align and compare the genetic map representing QTL interval on 1BS and 5BS with the reference sequence of wheat and identify resistance genes (-genes) associated with SNB response.

View Article and Find Full Text PDF

The slow rate of genetic gain for improving resistance to Septoria nodorum blotch (SNB) is due to the inherent complex interactions between host, isolates, and environments. Breeding for improved SNB resistance requires evaluation and selection of wheat genotypes consistently expressing low SNB response in different target production environments. The study focused on evaluating 232 genotypes from global origins for resistance to SNB in the flag leaf expressed in different Western Australian environments.

View Article and Find Full Text PDF

Understanding the interactions between genes, the environment and management in agricultural practice could allow more accurate prediction and management of product yield and quality. Metabolomics data provides a read-out of these interactions at a given moment in time and is informative of an organism's biochemical status. Further, individual metabolites or panels of metabolites can be used as precise biomarkers for yield and quality prediction and management.

View Article and Find Full Text PDF