Publications by authors named "M Fox-Powell"

Article Synopsis
  • Sodium chloride (NaCl) is significant across various fields, including geochemistry and food production, and is one of the most prevalent salts in the cosmos.
  • Researchers discovered a new form of NaCl, a metastable dihydrate, created by rapidly freezing a NaCl solution, which transforms into hydrohalite and ice Ih when heated above 190 K.
  • This finding suggests that the presence of this new hydrate on icy celestial bodies, like Jupiter and Saturn's moons, could indicate areas where subsurface brines have recently frozen, highlighting potential targets for future space missions.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied water from early Mars to see if it could have supported life.
  • They looked at tiny living things (microbes) from a place in Canada that has conditions similar to Mars.
  • The experiments showed that these microbes could grow in the simulated Martian water and even had special types that help with sulfur, suggesting this Canadian site is a good stand-in for Mars.
View Article and Find Full Text PDF

Due to their potential to support chemolithotrophic life, relic hydrothermal systems on Mars are a key target for astrobiological exploration. We analysed water and sediments at six geothermal pools from the rhyolitic Kerlingarfjöll and basaltic Kverkfjöll volcanoes in Iceland, to investigate the localised controls on the habitability of these systems in terms of microbial community function. Our results show that host lithology plays a minor role in pool geochemistry and authigenic mineralogy, with the system geochemistry primarily controlled by deep volcanic processes.

View Article and Find Full Text PDF

The transition of the martian climate from the wet Noachian era to the dry Hesperian (4.1-3.0 Gya) likely resulted in saline surface waters that were rich in sulfur species.

View Article and Find Full Text PDF

The physical and chemical factors that can limit or prevent microbial growth in the deep subsurface are not well defined. Brines from an evaporite sequence were sampled in the Boulby Mine, United Kingdom between 800 and 1300 m depth. Ionic, hydrogen and oxygen isotopic composition were used to identify two brine sources, an aquifer situated in strata overlying the mine, and another ambiguous source distinct from the regional groundwater.

View Article and Find Full Text PDF