Publications by authors named "M Fouadi"

Background: Lung fibroblasts play a central role in maintaining lung homeostasis and facilitating repair through the synthesis and organization of the extracellular matrix (ECM). This study investigated the cross-talk between interleukin-1 alpha (IL-1α) and transforming growth factor-β (TGF-β) signaling, two key regulators in tissue repair and fibrosis, in the context of lung fibroblast repair in the healthy lung.

Results: Stimulation of lung fibroblasts with TGF-β1 and TGF-β2 induced collagen-I and fibronectin protein expression (p < 0.

View Article and Find Full Text PDF

Rationale: In the healthy lung, the pseudostratified conducting airway epithelium is anchored to the reticular basement membrane (RBM) via hemidesmosome junction complexes formed between basal cells and the extracellular matrix (ECM). The RBM within the healthy lung is composed of the ECM proteins laminin and collagen-IV. In patients with asthma, the RBM is remodeled with collagen-I, -III and fibronectin deposition.

View Article and Find Full Text PDF

The extracellular matrix (ECM) supports lung tissue architecture and physiology by providing mechanical stability and elastic recoil. Over the last several decades, it has become increasingly clear that the stiffness of the ECM governs many cellular processes, including cell-phenotype and functions during development, healing, and disease. Of all the lung ECM proteins, collagen-I is the most abundant and provides tensile strength.

View Article and Find Full Text PDF

The alveolar ducts are connected to peripheral septal fibers which extend from the visceral pleura into interlobular septa, and are anchored to axial fibers in the small airways. Together these axial and septal fibers constitute a fiber continuum that provides tension and integrity throughout the lung. Building on the observations that alveolar ducts associated with sub-pleural alveoli are orientated perpendicular to the visceral pleura, and in parallel to each other, the goal of the present study was to investigate the nature of the collagen fiber organization within sub-pleural alveolar ducts in healthy control and elastase-induced emphysema murine lungs.

View Article and Find Full Text PDF

In asthma, the airway epithelium has an impaired capacity to differentiate and plays a key role in the development of airway inflammation and remodeling through mediator release. The study objective was to investigate the release of (IL)-1 family members from primary airway epithelial-cells during differentiation, and how they affect primary airway fibroblast (PAF)-induced inflammation, extracellular matrix (ECM) production, and collagen I remodeling. The release of IL-1α/β and IL-33 during airway epithelial differentiation was assessed over 20-days using air-liquid interface cultures.

View Article and Find Full Text PDF