Publications by authors named "M Forstreuter"

Drosophila melanogaster (Meigen) detects and uses many volatiles for its survival. Carbon dioxide (CO(2)) is detected in adults by a special class of olfactory receptor neurons, expressing the gustatory receptor Gr21a. The behavioral responses to CO(2) were investigated in a four-field olfactometer bioassay that is new for Drosophila.

View Article and Find Full Text PDF

Scots pine (Pinus sylvestris) is known to change its terpenoid metabolism in response to egg deposition by the sawfly Diprion pini (Hymenoptera, Diprionidae). Three days after egg deposition, parts of the pine twig adjacent to the egg-laden one are induced to emit volatiles, which attract egg parasitoids. In this study, we investigated whether egg deposition by this sawfly affects pine photosynthesis.

View Article and Find Full Text PDF

Beech (Fagus sylvatica L.) seedlings were grown in an ambient or elevated CO2 concentration ([CO2]) either in small stands in microcosms for three to four seasons or individually in pots fertilized at different nutrient supply rates. Leaves at different stages of development, as well as stems and roots at the end of the growing season, were used for analysis of structural biomass and lignin.

View Article and Find Full Text PDF

•  Data from 13 long-term (> 1 yr), field-based studies of the effects of elevated CO concentration ([CO ]) on European forest tree species were analysed using meta-analysis and modelling. Meta-analysis was used to determine mean responses across the data sets, and data were fitted to two commonly used models of stomatal conductance in order to explore response to environmental conditions and the relationship with assimilation. •  Meta-analysis indicated a significant decrease (21%) in stomatal conductance in response to growth in elevated [CO ] across all studies.

View Article and Find Full Text PDF

Beech trees (Fagus sylvatica L.) show reduced stomatal conductance and increased leaf area index in response to increased atmospheric CO(2) concentration. To determine whether the reduction in stomatal conductance results in lower stand evapotranspiration, we compared transpiration on a leaf-area basis and stand evapotranspiration on a ground-area basis in young European beech trees growing in greenhouses at ambient (360 +/- 34 micro mol mol(-1)) and elevated (698 +/- 10 micro mol mol(-1)) CO(2) concentrations.

View Article and Find Full Text PDF