Publications by authors named "M Forouhan"

Article Synopsis
  • Androgens, through their interaction with the androgen receptor (AR), play a significant role in muscle development and mass regulation, but the exact mechanisms remain unclear.
  • This study reveals that AR collaborates with SMAD4 to promote muscle growth by modulating gene expression and chromatin dynamics, particularly in response to muscle wasting conditions.
  • In models of spinal and bulbar muscular atrophy (SBMA), an elongated polyglutamine (polyQ) tract in AR disrupts this cooperative function, leading to muscle atrophy, but treatment with BMP7 can potentially mitigate these effects and offers a pathway for future therapies.
View Article and Find Full Text PDF

The vacuolar H-ATPase is a large multi-subunit proton pump, composed of an integral membrane V0 domain, involved in proton translocation, and a peripheral V1 domain, catalysing ATP hydrolysis. This complex is widely distributed on the membrane of various subcellular organelles, such as endosomes and lysosomes, and plays a critical role in cellular processes ranging from autophagy to protein trafficking and endocytosis. Variants in , the brain-enriched isoform in the V0 domain, have been recently associated with developmental delay and epilepsy in four individuals.

View Article and Find Full Text PDF
Article Synopsis
  • - Spinal and bulbar muscular atrophy (SBMA) is an adult-onset disease linked to a mutated androgen receptor (AR) protein that affects muscle function and has significant clinical challenges.
  • - Recent research indicates that the abnormal transcriptional activity of the mutant AR is central to the disease's progression, suggesting that correcting this issue could lead to promising treatments.
  • - The study explored the use of AR isoform 2, which is a shorter version of the AR that doesn't contain the problematic polyQ region, and found that introducing this isoform using a specific viral vector improved symptoms in mice with SBMA by normalizing the dysregulated transcriptional activity.
View Article and Find Full Text PDF

Mutations, mostly in the region of the COL10A1 gene encoding the C-terminal non-collagenous domain, cause the dwarfism metaphyseal chondrodysplasia type Schmid (MCDS). In most cases, the disease mechanism involves the misfolding of the mutant protein causing increased endoplasmic reticulum (ER) stress and an unfolded protein response (UPR). However, in an iliac crest biopsy, the COL10A1 p.

View Article and Find Full Text PDF

Whilst the role of ATF6α in modulating the unfolded protein response (UPR) has been well documented, the function of its paralogue ATF6β is less well understood. Using knockdown in cell culture and gene ablation in mice we have directly compared the roles of ATF6α & β in responding to the increased ER stress induced by mutant forms of type X collagen that cause the ER stress-associated metaphyseal chondrodysplasia type Schmid (MCDS). ATF6α more efficiently deals with the disease-associated ER stress in the absence of ATF6β and conversely, ATF6β is less effective in the absence of ATF6α.

View Article and Find Full Text PDF