Meta-omics is commonly used for large-scale analyses of microbial eukaryotes, including species or taxonomic group distribution mapping, gene catalog construction, and inference on the functional roles and activities of microbial eukaryotes in situ. Here, we explore the potential pitfalls of common approaches to taxonomic annotation of protistan meta-omic datasets. We re-analyze three environmental datasets at three levels of taxonomic hierarchy in order to illustrate the crucial importance of database completeness and curation in enabling accurate environmental interpretation.
View Article and Find Full Text PDFMicrobes transform their environments using diverse enzymatic reactions. However, it remains challenging to measure microbial reaction rates in natural environments. Despite advances in global quantification of enzyme abundances, the individual relationships between enzyme abundances and their reaction rates have not been systematically examined.
View Article and Find Full Text PDF