Retinitis pigmentosa (RP) is a Mendelian disease characterized by gradual loss of vision, due to the progressive degeneration of retinal cells. Genetically, it is highly heterogeneous, with pathogenic variants identified in more than 100 genes so far. Following a large-scale sequencing screening, we identified five individuals (four families) with recessive and non-syndromic RP, carrying as well bi-allelic DNA changes in COQ8B, a gene involved in the biosynthesis of coenzyme Q10.
View Article and Find Full Text PDFIntroduction: Retinitis pigmentosa (RP) is a rare degenerative retinal disease caused by mutations in approximately seventy genes. Currently, despite the availability of large-scale DNA sequencing technologies, ∼30-40% of patients still cannot be diagnosed at the molecular level. In this study, we investigated a novel intronic deletion of PDE6B, encoding the beta subunit of phosphodiesterase 6 in association with recessive RP.
View Article and Find Full Text PDFWireless powered optogenetic cell-based implant provides a strategy to deliver subcutaneously therapeutic proteins. Immortalize Human Mesenchymal Stem Cells (hMSC-TERT) expressing the bacteriophytochrome diguanylate cyclase (DGCL) were validated for optogenetic controlled interferon-β delivery (Optoferon cells) in a bioelectronic cell-based implant. Optoferon cells transcriptomic profiling was used to elaborate an in-silico model of the recombinant interferon-β production.
View Article and Find Full Text PDFIn the framework of the UK 100 000 Genomes Project, we investigated the genetic origin of a previously undescribed recessive dermatological condition, which we named LIPHAK (LTV1-associated Inflammatory Poikiloderma with Hair abnormalities and Acral Keratoses), in four affected individuals from two UK families of Pakistani and Indian origins, respectively. Our analysis showed that only one gene, LTV1, carried rare biallelic variants that were shared in all affected individuals, and specifically they bore the NM_032860.5:c.
View Article and Find Full Text PDFBackground: Current first-line disease-modifying therapies (DMT) for multiple sclerosis (MS) patients are injectable or oral treatments. The Optogenerapy consortium is developing a novel bioelectronic cell-based implant for controlled release of beta-interferon (IFNβ1a) protein into the body. The current study estimated the potential cost effectiveness of the Optogenerapy implant (hereafter: Optoferon) compared with injectable IFNβ1a (Avonex).
View Article and Find Full Text PDF