Publications by authors named "M Fleyer"

We demonstrate, theoretically and experimentally, a new method to measure small changes in the cavity length of oscillators. The method is based on the high sensitivity of the phase of forced delay-line oscillators to changes in their cavity length. The oscillator phase is directly detected by mixing the oscillator output with the injected signal.

View Article and Find Full Text PDF

Homogeneously broadened delay-line oscillators such as lasers or optoelectronic oscillators (OEOs) can potentially oscillate in a large number of cavity modes that are supported by their amplifier bandwidth. In a continuous wave operating mode, the oscillating mode is selected between one or few cavity modes that experience the highest small-signal gain. In this manuscript, we show that the oscillation mode of a homogeneously broadened oscillator can be selected from a large number of modes in a frequency region that can be broader than the full width at half maximum of the effective cavity filter.

View Article and Find Full Text PDF

We experimentally demonstrate a wideband-frequency tunable optoelectronic oscillator (OEO) based on injection locking of the OEO to a tunable electronic oscillator. The OEO cavity does not contain a narrowband filter and its frequency can be tuned over a broad bandwidth of 1 GHz. The injection locking is based on minimizing the injected power by adjusting the frequency of one of the OEO cavity modes to be approximately equal to the frequency of the injected signal.

View Article and Find Full Text PDF

We study, theoretically and experimentally, intensity noise induced by double Rayleigh scattering in long optical fibers. The results of the theoretical model are compared to experimental results performed with a high-coherence-length laser with a frequency noise spectrum that is dominated by 1/fν noise. Excellent quantitative agreement between theoretical and experimental RF spectra were obtained for frequencies as low as 10 Hz and for fiber lengths between 4 and 45 km.

View Article and Find Full Text PDF

Backward Rayleigh scattering in optical fibers due to the fluctuations that are "frozen-in" to the fiber during the manufacturing process may limit the performance of optical sensors and bidirectional coherent optical communication systems. In this manuscript we describe a comprehensive model for studying intensity noise induced by spontaneous Rayleigh backscattering in optical systems that are based on self-homodyne detection. Our model includes amplitude and frequency noise of the laser source, random distribution of the scatterers along the fiber, and phase noise induced in fibers due to thermal and mechanical fluctuations.

View Article and Find Full Text PDF