Publications by authors named "M Fichtner"

Hollandite-type α-MnO exhibits exceptional promise in current industrial applications and in advancing next-generation green energy technologies, such as multivalent (Mg, Ca, and Zn) ion battery cathodes and aerobic oxidation catalysts. Considering the slow diffusion of multivalent cations within α-MnO tunnels and the catalytic activity at edge surfaces, ultrasmall α-MnO particles with a lower aspect ratio are expected to unlock the full potential. In this study, ultrasmall α-MnO (<10 nm) with a low aspect ratio (c/a ≈ 2) is synthesized using a newly developed alcohol solution process.

View Article and Find Full Text PDF

The development of next-generation battery technologies needs to consider their environmental impact throughout the whole cycle life, which has brought new chemistries based on earth-abundant elements into the spotlight. Rechargeable calcium batteries are such an emerging technology, which shows the potential to provide high cell voltage and high energy density close to lithium-ion batteries. Additionally, the use of Ca as a charge carrier renders significant sustainable values.

View Article and Find Full Text PDF
Article Synopsis
  • A novel anode material for rechargeable magnesium batteries (RMBs) was created, featuring a core-shell structure of gallium (Ga) encapsulated by reduced graphene oxide (rGO).
  • The Ga@rGO anode exhibits impressive performance, achieving a specific capacity of 150 mAh/g at 0.5 A/g for 1200 cycles at room temperature and 100 mAh/g at 1 A/g for 700 cycles at 40 °C.
  • Utilizing a cost-effective and eco-friendly direct drop coating method, the anode demonstrates not only high cycling stability and rate performance but also a self-healing ability even under extreme charging conditions, making it a promising candidate for advanced RMB technologies.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers applied advanced engineering techniques to improve Prussian blue analogue (PBA) cathodes, exploring both cubic and monoclinic crystal structures.
  • They used various characterization methods to study the electrochemical behavior of these PBAs, revealing key insights into their performance.
  • The cubic PBA structure showed notable advantages after optimization, including better cycling stability, good reversibility, minimal capacity loss, and high thermal stability even under challenging conditions.
View Article and Find Full Text PDF

Rechargeable magnesium batteries (RMBs) have the potential to provide a sustainable and long-term solution for large-scale energy storage due to high theoretical capacity of magnesium (Mg) metal as an anode, its competitive redox potential (Mg/Mg:-2.37 V vs. SHE) and high natural abundance.

View Article and Find Full Text PDF