Publications by authors named "M Fiandaca"

A primary function of the parenteral drug product manufacturing process is to ensure sterility of the final product. The two most common methods for sterilizing parenteral drug products are terminal sterilization (TS), whereby the drug product is sterilized in the final container following filling and finish, and membrane sterilization, whereby the product stream is sterilized by membrane filtration and filled into presterilized containers in an aseptic processing environment. Although TS provides greater sterility assurance than membrane sterilization and aseptic processing, not all drug products are amenable to TS processes, which typically involve heat treatment or exposure to ionizing radiation.

View Article and Find Full Text PDF

Direct putaminal infusion of adeno-associated virus vector (serotype 2) (AAV2) containing the human glial cell line-derived neurotrophic factor (GDNF) transgene was studied in a phase I clinical trial of participants with advanced Parkinson's disease (PD). Convection-enhanced delivery of AAV2-GDNF with a surrogate imaging tracer (gadoteridol) was used to track infusate distribution during real-time intraoperative magnetic resonance imaging (iMRI). Pre-, intra-, and serial postoperative (up to 5 years after infusion) MRI were analyzed in 13 participants with PD treated with bilateral putaminal co-infusions (52 infusions in total) of AAV2-GDNF and gadoteridol (infusion volume, 450 mL per putamen).

View Article and Find Full Text PDF
Article Synopsis
  • Research indicates that reactivation of silent transposable elements (TEs) could lead to cognitive decline and Alzheimer's disease (AD) by affecting gene expression and causing neuroinflammation.
  • The study examines aging subjects who developed late-onset AD, comparing blood samples collected before and after their condition changed.
  • The analysis identified significant changes in the expression of 1,790 TEs, suggesting that a specific transcriptional profile of DE TEs could serve as a potential biomarker for cognitive decline and AD progression.
View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy wherein a majority of patients present metastatic disease at diagnosis. Although the role of epithelial to mesenchymal transition (EMT), mediated by transforming growth factor beta (TGFβ), in imparting an aggressive phenotype to PDAC is well documented, the underlying biochemical pathway perturbations driving this behaviour have not been elucidated. We used high-resolution mass spectrometry (HRMS) based molecular phenotyping approach in order to delineate metabolic changes concomitant to TGFβ-induced EMT in pancreatic cancer cells.

View Article and Find Full Text PDF