This paper describes a method for registering and visualizing in real-time the results of transcranial magnetic stimulations (TMS) in physical space on the corresponding anatomical locations in MR images of the brain. The method proceeds in three main steps. First, the patient scalp is digitized in physical space with a magnetic-field digitizer, following a specific digitization pattern.
View Article and Find Full Text PDFVirtual cystoscopy is a developing technique for bladder cancer screening. In a conventional cystoscopy, an optical probe is inserted into the bladder and an expert reviews the appearance of the bladder wall. Physical limitations of the probe place restrictions on the examination of the bladder wall.
View Article and Find Full Text PDFThe increased use of image-guided surgery systems during neurosurgery has brought to prominence the inaccuracies of conventional intraoperative navigation systems caused by shape changes such as those due to brain shift. We propose a method to track the deformation of the brain and update preoperative images using intraoperative MR images acquired at different crucial time points during surgery. We use a deformable surface matching algorithm to capture the deformation of boundaries of key structures (cortical surface, ventricles and tumor) throughout the neurosurgical procedure, and a linear finite element elastic model to infer a volumetric deformation.
View Article and Find Full Text PDFIEEE Trans Med Imaging
December 2001
We present a new algorithm for the nonrigid registration of three-dimensional magnetic resonance (MR) intraoperative image sequences showing brain shift. The algorithm tracks key surfaces of objects (cortical surface and the lateral ventricles) in the image sequence using a deformable surface matching algorithm. The volumetric deformation field of the objects is then inferred from the displacements at the boundary surfaces using a linear elastic biomechanical finite-element model.
View Article and Find Full Text PDFIn this report we evaluate an image registration technique that can improve the information content of intraoperative image data by deformable matching of preoperative images. In this study, pretreatment 1.5 tesla (T) magnetic resonance (MR) images of the prostate are registered with 0.
View Article and Find Full Text PDF