Publications by authors named "M Fernando R Pereira"

It was assumed that only autogenous bone had appropriate osteoconductive and osteoindutive properties for bone regeneration, but this assumption has been challenged. Many studies have shown that synthetic biomaterials must be considered as the best choice for guided bone regeneration. The objective of this work is to compare the performances of nanohydroxyapatite/β-tricalcium phosphate (n-HA/β-TCP) composite and autogenous bone grafting in bone regeneration applications.

View Article and Find Full Text PDF

Background: Hemophagocytic lymphohistiocytosis (HLH) is a rare, life-threatening hyperinflammatory syndrome marked by excessive immune activation. It can be triggered by various factors, including infections, malignancies, and autoimmune diseases, making the diagnosis challenging due to its overlap with other severe conditions.

Case Reports: We discuss two intensive care unit (ICU) cases illustrating the diverse manifestations of HLH and the critical importance of early recognition and treatment.

View Article and Find Full Text PDF

The conversion of organic matter to methane through anaerobic digestion (AD) process can be enhanced by different materials. However, literature reports show inconsistent results on the effect of materials in different AD systems. In this study, we evaluated the influence of the inoculum's activity on methane production (MP) efficiency in the presence of different materials (activated carbon (AC), magnetite (Mag), and zeolite (Zeo)).

View Article and Find Full Text PDF

A female adolescent with no relevant past history was admitted to the Pediatric Emergency Department with two episodes of seizures without trauma, fever, or other symptoms. Head-MRI revealed bilateral subependymal nodular irregularities lining the lateral ventricles, with similar signal evolution to grey matter, confirming the diagnosis of periventricular nodular heterotopias (PVNH). Genetic testing revealed a Filamin A ( variant; family studies were negative.

View Article and Find Full Text PDF

Solid-state nanopores exhibit dynamically variable sizes influenced by buffer conditions and applied electric field. While dynamical pore behavior can complicate biomolecular sensing, it also offers opportunities for controlled, modification of pore size post-fabrication. In order to optimally harness solid-state pore dynamics for controlled growth, there is a need to systematically quantify pore growth dynamics and ideally develop quantitative models to describe pore growth.

View Article and Find Full Text PDF