Publications by authors named "M Fernando Gonzalez-Zalba"

This study investigates the goal/habit imbalance theory of compulsion in obsessive-compulsive disorder (OCD), which postulates enhanced habit formation, increased automaticity, and impaired goal/habit arbitration. It directly tests these hypotheses using newly developed behavioral tasks. First, OCD patients and healthy participants were trained daily for a month using a smartphone app to perform chunked action sequences.

View Article and Find Full Text PDF

Josephson parametric amplifiers (JPAs) approaching quantum-limited noise performance have been instrumental in enabling high fidelity readout of superconducting qubits and, recently, semiconductor quantum dots (QDs). We propose that the quantum capacitance arising in electronic two-level systems (the dual of Josephson inductance) can provide an alternative dissipationless nonlinear element for parametric amplification. We experimentally demonstrate phase-sensitive parametric amplification using a QD-reservoir electron transition in a CMOS nanowire split-gate transistor embedded in a 1.

View Article and Find Full Text PDF

Spins in silicon quantum devices are promising candidates for large-scale quantum computing. Gate-based sensing of spin qubits offers a compact and scalable readout with high fidelity, however, further improvements in sensitivity are required to meet the fidelity thresholds and measurement timescales needed for the implementation of fast feedback in error correction protocols. Here, we combine radio-frequency gate-based sensing at 622 MHz with a Josephson parametric amplifier, that operates in the 500-800 MHz band, to reduce the integration time required to read the state of a silicon double quantum dot formed in a nanowire transistor.

View Article and Find Full Text PDF

Electron spins in silicon quantum dots provide a promising route towards realizing the large number of coupled qubits required for a useful quantum processor. For the implementation of quantum algorithms and error detection, qubit measurements are ideally performed in a single shot, which is presently achieved using on-chip charge sensors, capacitively coupled to the quantum dots. However, as the number of qubits is increased, this approach becomes impractical due to the footprint and complexity of the charge sensors, combined with the required proximity to the quantum dots.

View Article and Find Full Text PDF

We report on individual-InAs nanowire optoelectronic devices which can be tailored to exhibit either negative or positive photoconductivity (NPC or PPC). The NPC photoresponse time and magnitude is found to be highly tunable by varying the nanowire diameter under controlled growth conditions. Using hysteresis characterization, we decouple the observed photoexcitation-induced hot electron trapping from conventional electric field-induced trapping to gain a fundamental insight into the interface trap states responsible for NPC.

View Article and Find Full Text PDF