Publications by authors named "M Ferdjallah"

The convolution of the transmembrane current of an excitable cell and a weighting function generates a single fiber action potential (SFAP) model by using the volume conductor theory. Here, we propose an empirical muscle IAP model with multiple Erlang probability density functions (PDFs) based on a modified Newton method. In addition, we generate SFAPs based on our IAP model and referent sources, and use the peak-to-peak ratios (PPRs) of SFAPs for model verification.

View Article and Find Full Text PDF

The filtering of signals in the presence of a narrow-band interference noise is a common problem in biomedical signal processing. A double adaptive band-rejection filter is applied to an electroencephalographic (EEG) signal corrupted by a double narrow-band white Gaussian noise during cranial electrical stimulation (CES). The multiple adaptive IIR digital band-rejection filters are designed by the pole-zero placement on the unit circle method using a unique second-order filter structure.

View Article and Find Full Text PDF

Ankle foot orthoses (AFOs) are prescribed for ambulatory children with spastic diplegia to improve biomechanical alignment and functional capability. The purpose of this study was to employ quantitative motion analysis of the lower extremity to investigate two rehabilitative orthotics. The effects of hinged ankle foot orthoses (HAFO) and dynamic ankle foot orthoses (DAFO) for joint ankle management in children with cerebral palsy were compared.

View Article and Find Full Text PDF

Motor nerve conduction is a noninvasive clinical test used to diagnose nerve problems such as carpal tunnel syndrome or peripheral neuropathy. Current techniques use a single-site recording over a superficial muscle. This traditional approach does not account for the electrical contributions from the other muscles innervated by the nerve being stimulated, which need to be considered with thumb carpometacarpal (CMC) degenerative joint disease (DJD) because these electrical contributions may change the anatomic relationship of the thenar muscles.

View Article and Find Full Text PDF

Compound muscle action potential (CMAP) onset latency is interpreted to reflect the arrival time at the muscle of impulses in the fastest-conducting motor nerve fiber. However, we have observed that the position of the reference or indifferent electrode (E2) affects CMAP onset latency. Motor nerve conduction studies (NCS) of the median, ulnar, and deep ulnar motor (DUM) nerves on 20 normal hands were performed using both traditional bipolar and experimental monopolar (referenced to the contralateral hand) montages.

View Article and Find Full Text PDF