Tree-like structures, such as retinal images, are widely studied in computer-aided diagnosis systems for large-scale screening programs. Despite several segmentation and tracking methods proposed in the literature, there still exist several limitations specifically when two or more curvilinear structures cross or bifurcate, or in the presence of interrupted lines or highly curved blood vessels. In this paper, we propose a novel approach based on multi-orientation scores augmented with a contextual affinity matrix, which both are inspired by the geometry of the primary visual cortex (V1) and their contextual connections.
View Article and Find Full Text PDFThis letter presents a mathematical model of figure-ground articulation that takes into account both local and global gestalt laws and is compatible with the functional architecture of the primary visual cortex (V1). The local gestalt law of good continuation is described by means of suitable connectivity kernels that are derived from Lie group theory and quantitatively compared with long-range connectivity in V1. Global gestalt constraints are then introduced in terms of spectral analysis of a connectivity matrix derived from these kernels.
View Article and Find Full Text PDFABSTRACT Localization of hydrogen peroxide (H(2)O(2)) and the roles of peroxidases, malondialdehyde, and reduced glutathione in three apple cultivars were compared in healthy trees, trees infected with apple proliferation phytoplasma (APP), and trees that had recovered from the infection. In recovered apple trees, symptoms of the disease and the pathogen had disappeared from the canopy, but phytoplasmas remained in the roots. H(2)O(2) was detected cytochemically by its reaction with cerium chloride to produce electron-dense deposits of cerium perhydroxides.
View Article and Find Full Text PDF