Publications by authors named "M Farrow"

Purpose: Over the past 15 years, the landscape of early phase clinical trials (EPCTs) has undergone a remarkable expansion in both quantity and intricacy. The proliferation of sites, trials, sponsors, and contract research organizations has surged exponentially, marking a significant shift in research conduct. However, EPCT operations suffer from numerous inefficiencies, such as cumbersome start-up processes, which are particularly critical when drug safety and the recommended phase II dose need to be established in a timely manner.

View Article and Find Full Text PDF

Glomeruli filter blood through the coordination of podocytes, mesangial cells, fenestrated endothelial cells, and the glomerular basement membrane. Cellular changes, such as podocyte loss, are associated with pathologies like diabetic kidney disease. However, little is known regarding the in situ molecular profiles of specific cell types and how these profiles change with disease.

View Article and Find Full Text PDF

Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a rapidly advancing technology for biomedical research. As spatial resolution increases, however, so do acquisition time, file size, and experimental cost, which increases the need to perform precise sampling of targeted tissue regions to optimize the biological information gleaned from an experiment and minimize wasted resources. The ability to define instrument measurement regions based on key tissue features and automatically sample these specific regions of interest (ROIs) addresses this challenge.

View Article and Find Full Text PDF

Spatially resolved molecular assays provide high dimensional genetic, transcriptomic, proteomic, and epigenetic information in situ and at various resolutions. Pairing these data across modalities with histological features enables powerful studies of tissue pathology in the context of an intact microenvironment and tissue structure. Increasing dimensions across molecular analytes and samples require new data science approaches to functionally annotate spatially resolved molecular data.

View Article and Find Full Text PDF

In individuals with a spinal cord injury (SCI), rapid skeletal muscle atrophy and metabolic dysfunction pose profound rehabilitation challenges, often resulting in substantial loss of muscle mass and function. This study evaluates the effect of combined neuromuscular electrical stimulation (Comb-NMES) on skeletal muscle cross-sectional area (CSA) and inflammatory signaling within the acute phase of SCI. We applied a novel Comb-NMES regimen, integrating both high-frequency resistance and low-frequency aerobic protocols on the vastus lateralis muscle, to participants early post-SCI.

View Article and Find Full Text PDF