Giant reed (Arundo donax L.) is one of the most well-studied perennial biomass crops because of its high productivity and potential to store carbon. Yet, little information on controlling weeds in giant reed plantations and their influences on the soil ecosystem is available.
View Article and Find Full Text PDFIt is necessary to develop and deploy novel protein production to allow the establishment of a sustainable supply for both humans and animals, given the ongoing expansion of protein demand to meet the future needs of the increased world population and high living standards. In addition to plant seeds, green biomass from dedicated crops or green agricultural waste is also available as an alternative source to fulfill the protein and nutrient needs of humans and animals. The development of extraction and precipitation methods (such as microwave coagulation) for chloroplast and cytoplasmic proteins, which constitute the bulk of leaf protein, will allow the production of leaf protein concentrates (LPC) and protein isolates (LPI).
View Article and Find Full Text PDFRecently, leaf protein concentrate (LPC) has gained increased attention in response to the constantly growing protein demand. Green biorefineries can become more economical by valorizing their by-products and reducing environmental risks. The current study describes the variations in the antioxidant capacity and phytochemical composition of a liquid by-product (referred to as brown juice (BJ)) obtained during the extraction of leaf protein concentrate (LPC) from the fresh biomass of alfalfa ( L.
View Article and Find Full Text PDFGreen biorefining uses fresh lignocellulosic biomass to produce green juice and pressed fibre fractions by wet fractionation. The latter is a byproduct, accounting for 25-32% of the starting material. In this study, the composition (glucan, xylan, arabinan, lignin, total phenol, flavonoid and protein) of pressed fibres obtained from four alfalfa, four soy and one broccoli varieties were determined at different harvest times.
View Article and Find Full Text PDFThe main objective of this study was to increase the economic value of broccoli green agro-waste using three wet fractionation methods in the shadow of green biorefinery and the circular economy. Product candidates were obtained directly by using a mechanical press, and indirectly by using microwave coagulation or via lactic acid fermentation of green juice. The leaf protein concentrates (LPC) fractions displayed significantly higher dry matter content and crude protein content (34-39 m/m% on average) than the green juice fraction (27.
View Article and Find Full Text PDF