Background: In Colombia and worldwide, breast cancer (BC) is the most frequently diagnosed neoplasia and the leading cause of death from cancer among women. Studies predominantly involve hereditary and familial cases, demonstrating a gap in the literature regarding the identification of germline mutations in unselected patients from Latin-America. Identification of pathogenic/likely pathogenic (P/LP) variants is important for shaping national genetic analysis policies, genetic counseling, and early detection strategies.
View Article and Find Full Text PDFLinearly interlinked single atoms offer unprecedented physiochemical properties, but their synthesis for practical applications still poses significant challenges. Herein, linearly interlinked iron single-atom catalysts that are loaded onto interconnected carbon channels as cathodic sulfur hosts for room-temperature sodium-sulfur batteries are presented. The interlinked iron single-atom exhibits unique metallic iron bonds that facilitate the transfer of electrons to the sulfur cathode, thereby accelerating the reaction kinetics.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Spinal Cord Injury (SCI) is a common disease that usually limits the patient's independence by affecting their motor function. SCI patients usually present neuroplasticity, which allows brain signals transmission through spread pathways. Some innovative rehabilitation therapies, such as functional electrical stimulation (FES) or Brain-computer interfaces (BCIs) jointly with motor neuroprostheses, provide hope for functional restoration.
View Article and Find Full Text PDFSodium metal has become one of the most promising anodes for next-generation cheap and high-energy-density metal batteries; however, challenges caused by the uncontrollable sodium dendrite growth and fragile solid electrolyte interphase (SEI) restrict their large-scale practical applications in low-cost and wide-voltage-window carbonate electrolytes. Herein, a novel multifunctional separator with lightweight and high thinness is proposed, assembled by the cobalt-based metal-organic framework nanowires (Co-NWS), to replace the widely applied thick and heavy glass fiber separator. Benefitting from its abundant sodiophilic functional groups and densely stacked nanowires, Co-NWS not only exhibits outstanding electrolyte wettability and effectively induces uniform Na ion flux as a strong ion redistributor but also favors constructing the robust N,F-rich SEI layer.
View Article and Find Full Text PDF