Avalanche resistive switching is the fundamental process that triggers the sudden change of the electrical properties in solid-state devices under the action of intense electric fields. Despite its relevance for information processing, ultrafast electronics, neuromorphic devices, resistive memories and brain-inspired computation, the nature of the local stochastic fluctuations that drive the formation of metallic regions within the insulating state has remained hidden. Here, using operando X-ray nano-imaging, we have captured the origin of resistive switching in a VO-based device under working conditions.
View Article and Find Full Text PDFClimate Change and Materials Criticality challenges are driving urgent responses from global governments. These global responses drive policy to achieve sustainable, resilient, clean solutions with Advanced Materials (AdMats) for industrial supply chains and economic prosperity. The research landscape comprising industry, academe, and government identified a critical path to accelerate the Green Transition far beyond slow conventional research through Digital Technologies that harness Artificial Intelligence, Smart Automation and High Performance Computing through Materials Acceleration Platforms, MAPs.
View Article and Find Full Text PDFBlue catfish Ictalurus furcatus has been widely introduced throughout the United States to enhance recreational fisheries. Its success in both its native and non-native range, especially in the context of climate change, will be influenced by its thermal performance. We conducted a laboratory experiment to investigate the responses of wild-captured, subadult blue catfish to temperatures ranging from 7 °C to 38 °C.
View Article and Find Full Text PDFMultiple system atrophy is characterized pathologically by the accumulation of alpha-synuclein (aSyn) into glial cytoplasmic inclusions (GCIs). The mechanism underlying the formation of GCIs is not well understood. In this study, correlative light and electron microscopy was employed to investigate aSyn pathology in the substantia nigra and putamen of post-mortem multiple system atrophy brain donors.
View Article and Find Full Text PDFIntroduction: An excessive proliferation of fibroblasts and collagen synthesis after an injury may lead to a benign fibrous tumor, known as keloid, which does not regress spontaneously. Earlobes are a very frequent site of onset, since after a trauma (i.e.
View Article and Find Full Text PDF