Compositionally complex doping of spinel oxides toward high-entropy oxides is expected to enhance their electrochemical performance substantially. We successfully prepared high-entropy compounds, the oxide (ZnMgCoCu)FeO (HEOFe), lithiated oxyfluoride Li(ZnMgCoCu)FeOF (LiHEOFeF), and lithiated oxychloride Li(ZnMgCoCu)FeOCl (LiHEOFeCl) with a spinel-based cubic structure by ball milling and subsequent heat treatment. The products exhibit particles with sizes from 50 to 200 nm with a homogeneous atomic distribution.
View Article and Find Full Text PDFArch Biochem Biophys
December 2024
In aerobic organisms, cellular respiration is associated with electron transfer through a respiratory system of membrane-bound complexes. This electron flow is terminated by the reduction of dioxygen to water by respiratory oxidases. Cytochrome c oxidase (CcO) is a widely distributed heme-copper-oxygen reductase (HCO) found in all mitochondria and some bacteria.
View Article and Find Full Text PDFBroad band transmitting glasses from visible to mid-infrared with good mechanical strength, chemical durability, glass-forming ability, and thermal stability are preferred for optics and laser technology applications. Generally, low phonon energy glasses possess an extended transmission cutoff toward mid-infrared, but at the same time, retention of other desired properties is challenging for the researchers. In this work, we have shown that mixed alkaline earth (Ba/Sr) would have the potential to improve overall glass properties while retaining its low phonon energy when CaO is partially substituted by BaO/SrO in calcium magnesium zinc silica-aluminate (CMZSA) glass.
View Article and Find Full Text PDF