A chest X-ray report is a communicative tool and can be used as data for developing artificial intelligence-based decision support systems. For both, consistent understanding and labeling is important. Our aim was to investigate how readers would comprehend and annotate 200 chest X-ray reports.
View Article and Find Full Text PDFConsistent annotation of data is a prerequisite for the successful training and testing of artificial intelligence-based decision support systems in radiology. This can be obtained by standardizing terminology when annotating diagnostic images. The purpose of this study was to evaluate the annotation consistency among radiologists when using a novel diagnostic labeling scheme for chest X-rays.
View Article and Find Full Text PDFOur systematic review investigated the additional effect of artificial intelligence-based devices on human observers when diagnosing and/or detecting thoracic pathologies using different diagnostic imaging modalities, such as chest X-ray and CT. Peer-reviewed, original research articles from EMBASE, PubMed, Cochrane library, SCOPUS, and Web of Science were retrieved. Included articles were published within the last 20 years and used a device based on artificial intelligence (AI) technology to detect or diagnose pulmonary findings.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2017
Diabetes has become one of the biggest health problems in the world. In this context, adherence to insulin treatment is essential in order to avoid life-threatening complications. In this pilot study, a novel adherence detection algorithm using Deep Learning (DL) approaches was developed for type 2 diabetes (T2D) patients, based on simulated Continuous Glucose Monitoring (CGM) signals.
View Article and Find Full Text PDF