Publications by authors named "M F Zacarias Fluck"

Background: This study examines genetic variations in the systemic oxygen transport cascade during exhaustive exercise in physically trained tactical athletes. Research goal: To update the information on the distribution of influence of eleven polymorphisms in ten genes, namely ACE (rs1799752), AGT (rs699), MCT1 (rs1049434), HIF1A (rs11549465), COMT (rs4680), CKM (rs8111989), TNC (rs2104772), PTK2 (rs7460 and rs7843014), ACTN3 (rs1815739), and MSTN (rs1805086)-on the connected steps of oxygen transport during aerobic muscle work.

Methods: 251 young, healthy tactical athletes (including 12 females) with a systematic physical training history underwent exercise tests, including standardized endurance running with a 12.

View Article and Find Full Text PDF

The success of competitive alpine skiers with respective to their world ranking (WR) positions might be associated with prominent gene polymorphisms. Twenty-six competitive alpine skiers were followed from 2015 to 2019 for their WR positions (FIS-ranking). Using PCR, the genotypes of ACE-I/D, TNC, ACTN3, and PTK2 were identified.

View Article and Find Full Text PDF

Background: Polymorphism rs1049434 characterizes the nonsynonymous exchange of adenosine (A) by thymidine (T) in the gene for monocarboxylate transporter 1 (). We tested whether T-allele carriers of rs1049434 demonstrate increased accumulation of markers of metabolic strain.

Methods: Physically active, healthy, young male subjects (n = 22) conducted a power-matched one-legged cycling exercise to exhaustion.

View Article and Find Full Text PDF

Structural muscle changes, including muscle atrophy and fatty infiltration, follow rotator cuff tendon tear and are associated with a high repair failure rate. Despite extensive research efforts, no pharmacological therapy is available to successfully prevent both muscle atrophy and fatty infiltration after tenotomy of tendomuscular unit without surgical repair. Poly(ADP-ribose) polymerases (PARPs) are identified as a key transcription factors involved in the maintenance of cellular homeostasis.

View Article and Find Full Text PDF

Enpatoran is a novel, highly selective, and potent dual toll-like receptor (TLR)7 and TLR8 inhibitor currently under development for the treatment of autoimmune disorders including systemic lupus erythematosus (SLE), cutaneous lupus erythematosus (CLE), and myositis. The ongoing phase II study (WILLOW; NCT05162586) is evaluating enpatoran for 24 weeks in patients with active SLE or CLE and is currently recruiting. To support development of WILLOW as an Asia-inclusive multiregional clinical trial (MRCT) according to International Conference on Harmonisation E5 and E17 principles, we have evaluated ethnic sensitivity to enpatoran based on clinical pharmacokinetic (PK), pharmacodynamic (PD), and safety data from an ethno-bridging study (NCT04880213), supplemented by relevant quantitative PK, PD, and disease trajectory modeling (DTM) results, and drug metabolism/disease knowledge.

View Article and Find Full Text PDF