Publications by authors named "M F Yanyushin"

ATP synthases are unique rotatory molecular machines that supply biochemical reactions with adenosine triphosphate (ATP)-the universal "currency", which cells use for synthesis of vital molecules and sustaining life. ATP synthases of F-type (FF) are found embedded in bacterial cellular membrane, in thylakoid membranes of chloroplasts, and in mitochondrial inner membranes in eukaryotes. The main functions of ATP synthases are control of the ATP synthesis and transmembrane potential.

View Article and Find Full Text PDF

Energy transfer pathways between phycobiliproteins chromophores in the phycobilisome (PBS) core of the cyanobacterium Synechocystis sp. PCC 6803 were investigated. The computer 3D model of the PBS core with determination of chromophore to chromophore distance was created.

View Article and Find Full Text PDF

Using computational modeling and known 3D structure of proteins, we arrived at a rational spatial model of the orange carotenoid protein (OCP) and phycobilisome (PBS) interaction in the non-photochemical fluorescence quenching. The site of interaction is formed by the central cavity of the OCP monomer in the capacity of a keyhole to the characteristic external tip of the phycobilin-containing domain (PB) and folded loop of the core-membrane linker LCM within the PBS core. The same central protein cavity was shown to be also the site of the OCP and fluorescence recovery protein (FRP) interaction.

View Article and Find Full Text PDF

The fluorescence emission of the phycobilisome (PBS) core-membrane linker protein (L(CM)) can be directly quenched by photoactivated orange carotenoid protein (OCP) at room temperature both in vitro and in vivo, which suggests the crucial role of the OCP-L(CM) interaction in non-photochemical quenching (NPQ) of cyanobacteria. This implication was further supported (i) by low-temperature (77K) fluorescence emission and excitation measurements which showed a specific quenching of the corresponding long-wavelength fluorescence bands which belong to the PBS terminal emitters in the presence of photoactivated OCP, (ii) by systematic investigation of the fluorescence quenching and recovery in wild type and L(CM)-less cells of the model cyanobacterium Synechocystis sp. PCC 6803, and (iii) by the impact of dephosphorylation of isolated PBS on the quenching.

View Article and Find Full Text PDF

The reaction of the irreversible chemical reduction of the 13(1)-keto C=O group of pheophytin a (Pheo a) with sodium borohydride in reaction centers (RCs) of functionally active spinach photosystem II (PS II) core complexes was studied. Stable, chromatographically purified PS II core complex preparations with altered chromophore composition are obtained in which ~25% of Pheo a molecules are modified to 13(1)-deoxo-13(1)-hydroxy-Pheo a. Some of the chlorophyll a molecules in the complexes were also irreversibly reduced with borohydride to 13(1)-deoxo-13(1)-hydroxy-chlorophyll a.

View Article and Find Full Text PDF