Publications by authors named "M F Wilkemeyer"

There is a genetic contribution to fetal alcohol spectrum disorders (FASD), but the identification of candidate genes has been elusive. Ethanol may cause FASD in part by decreasing the adhesion of the developmentally critical L1 cell adhesion molecule through interactions with an alcohol binding pocket on the extracellular domain. Pharmacologic inhibition or genetic knockdown of ERK2 did not alter L1 adhesion, but markedly decreased ethanol inhibition of L1 adhesion in NIH/3T3 cells and NG108-15 cells.

View Article and Find Full Text PDF

Prenatal ethanol exposure causes fetal alcohol spectrum disorders (FASD) in part by disrupting the neural cell adhesion molecule L1. L1 gene mutations cause neuropathological abnormalities similar to those of FASD. Ethanol and 1-butanol inhibit L1-mediated cell-cell adhesion (L1 adhesion), whereas 1-octanol antagonizes this action.

View Article and Find Full Text PDF

The L1 cell adhesion molecule has been implicated in ethanol teratogenesis as well as NMDAR-dependent long-term potentiation (LTP) of synaptic transmission, a process thought to be critical for neural development. Ethanol inhibits LTP at least in part by interacting with NMDA receptors. Ethanol also inhibits L1-mediated cell adhesion in a manner that is prevented by an octapeptide, D-NAPVSIPQ (D-NAP), as well as long chain alcohols such as 1-octanol.

View Article and Find Full Text PDF

Ethanol inhibition of L1-mediated cell adhesion may contribute to the spectrum of neurological, behavioral and morphological abnormalities associated with prenatal ethanol exposure. We showed previously that the neuroprotective peptides NAPVSIPQ (NAP) and SALLRSIPA (SAL) antagonize ethanol inhibition of L1 adhesion and prevent ethanol-induced growth retardation in mouse whole embryo culture. Here we ask whether NAP and SAL also prevent ethanol-induced major malformations of the nervous system.

View Article and Find Full Text PDF

Increasing evidence suggests that ethanol damages the developing nervous system partly by disrupting the L1 cell adhesion molecule. Ethanol inhibits L1-mediated cell adhesion, and compounds that antagonize this action also prevent ethanol-induced embryotoxicity. Two such compounds are the small peptides NAPVSIPQ (NAP) and SALLRSIPA (SAL).

View Article and Find Full Text PDF