A significant challenge for chimeric antigen receptor (CAR) T cell therapy against glioblastoma (GBM) is its immunosuppressive microenvironment, which is densely populated by protumoral glioma-associated microglia and macrophages (GAMs). Myeloid immune checkpoint therapy targeting the CD47-signal regulatory protein alpha (SIRPα) axis induces GAM phagocytic function, but CD47 blockade monotherapy is associated with toxicity and low bioavailability in solid tumors. In this work, we engineer a CAR T cell against epidermal growth factor receptor variant III (EGFRvIII), constitutively secreting a signal regulatory protein gamma-related protein (SGRP) with high affinity to CD47.
View Article and Find Full Text PDFAlterations in mRNA 3' end processing and polyadenylation are widely implicated in the biology of many cancer types, including glioblastoma (GBM), one the most aggressive tumor types. Although several RNA-binding proteins (RBPs) responsible for alternative polyadenylation (APA) were identified from functional studies in cell lines, their contribution to the APA landscape in tumors was not thoroughly addressed. In this study we analyzed a large RNA-seq data set of glioblastoma (GBM) samples from The Cancer Genome Atlas (TCGA) to identify APA patterns differentiating the main molecular subtypes of GBM.
View Article and Find Full Text PDFCo-infections are a common reality but understanding how the immune system responds in this context is complex and can be unpredictable. Heligmosomoides bakeri (parasitic roundworm, previously Heligmosomoides polygyrus) and Toxoplasma gondii (protozoan parasite) are well studied organisms that stimulate a characteristic Th2 and Th1 response, respectively. Several studies have demonstrated reduced inflammatory cytokine responses in animals co-infected with such organisms.
View Article and Find Full Text PDF