Cell-instructive polymer hydrogels are instrumental in tissue engineering for regenerative therapies. Implementing defined and selective responsiveness to external stimuli is a persisting challenge that critically restricts their functionality. Addressing this challenge, this study introduces a versatile, modular hydrogel system composed of four-arm poly(ethylene glycol)(starPEG)-peptide and glycosaminoglycan(GAG)-maleimide conjugates.
View Article and Find Full Text PDFGlycogen, a naturally sourced highly branched polysaccharide nanoparticle, has been receiving attention in the field of nanomedicine due to its inherent non-toxicity and biodegradability. However, often in the literature glycogen nanoparticles (NPs) are used that come from different commercial sources (animals and tissues), which have significantly different sizes, molecular weights, and protein content, meaning a comprehensive overview of the interactions of these differently-sourced NPs with the human immune system is missing. Herein, we investigated coagulation, immune cell association and inflammation responses triggered by source-dependent interactions of glycogen NPs in human blood, utilising four types of commercially available glycogen: phytoglycogen (PG) isolated from sweet corn kernels, oyster glycogen (OG), rabbit liver glycogen (RLG), and bovine liver glycogen (BLG).
View Article and Find Full Text PDFInnovation (Camb)
September 2024
Universal coatings with versatile surface adhesion, good mechanochemical robustness, and the capacity for secondary modification are of great scientific interest. However, incorporating these advantages into a system is still a great challenge. Here, we report a series of catechol-decorated polyallylamines (CPAs), denoted as pseudo- foot protein 5 (-Mefp-5), that mimic not only the catechol and amine groups but also the backbone of Mefp-5.
View Article and Find Full Text PDFBackground: Neurointerventional devices, particularly laser-cut thin-strut stents made of self-expanding nickel-titanium alloy, are increasingly utilized for endovascular applications in intracranial arteries and dural venous sinuses. Preventing thrombosis and stroke necessitates systemic anticoagulant and antiplatelet therapies with the risk of bleeding complications. Antithrombotic coatings present a promising solution.
View Article and Find Full Text PDFHydrogel-based 3D cell cultures can recapitulate (patho)physiological phenomena ex vivo. However, due to their complex multifactorial regulation, adapting these tissue and disease models for high-throughput screening workflows remains challenging. In this study, a new precision culture scaling (PCS-X) methodology combines statistical techniques (design of experiment and multiple linear regression) with automated, parallelized experiments and analyses to customize hydrogel-based vasculogenesis cultures using human umbilical vein endothelial cells and retinal microvascular endothelial cells.
View Article and Find Full Text PDF