Background: Mobile devices for remote monitoring are inevitable tools to support treatment and patient care, especially in recurrent diseases such as major depressive disorder. The aim of this study was to learn if machine learning (ML) models based on longitudinal speech data are helpful in predicting momentary depression severity. Data analyses were based on a dataset including 30 inpatients during an acute depressive episode receiving sleep deprivation therapy in stationary care, an intervention inducing a rapid change in depressive symptoms in a relatively short period of time.
View Article and Find Full Text PDFActa Psychiatr Scand
July 2024
Background: Digital phenotyping and monitoring tools are the most promising approaches to automatically detect upcoming depressive episodes. Especially, linguistic style has been seen as a potential behavioral marker of depression, as cross-sectional studies showed, for example, less frequent use of positive emotion words, intensified use of negative emotion words, and more self-references in patients with depression compared to healthy controls. However, longitudinal studies are sparse and therefore it remains unclear whether within-person fluctuations in depression severity are associated with individuals' linguistic style.
View Article and Find Full Text PDFIn this study, a new species of Hyalella is described from southern region of Brazil. Hyalella jaboticabensis n. sp.
View Article and Find Full Text PDFJMIR Ment Health
January 2024
Background: The use of mobile devices to continuously monitor objectively extracted parameters of depressive symptomatology is seen as an important step in the understanding and prevention of upcoming depressive episodes. Speech features such as pitch variability, speech pauses, and speech rate are promising indicators, but empirical evidence is limited, given the variability of study designs.
Objective: Previous research studies have found different speech patterns when comparing single speech recordings between patients and healthy controls, but only a few studies have used repeated assessments to compare depressive and nondepressive episodes within the same patient.
In the last two decades, e-diary studies have gained increasing interest, with a dominant focus on mood and affect. Although requested in current guidelines, psychometric properties are rarely reported, and methodological investigations of factor structure, model fit, and the reliability of mood and affect assessment are limited. We used a seven-day e-diary dataset of 189 adolescent participants (12-17 years).
View Article and Find Full Text PDF