The transmission of resistance traits to herbivores across subsequent generations is an important strategy employed by plants to enhance their fitness in environments with high herbivore pressure. However, our understanding of the impact of maternal herbivory on direct and indirect induced chemical defenses of progeny, as well as the associated costs, is currently limited to herbivory by leaf-chewing insects. In this study, we investigated the transgenerational effects of a sap-feeding insect, the green peach aphid Myzus persicae, on direct and indirect chemical defenses of bell pepper plants (Capsicum annuum), and whether the effects entail costs to plant growth.
View Article and Find Full Text PDFResearch efforts have been made to develop novel tactics, such as those targeting behavioral control, for management of the Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae), vector of the causal agent of citrus Huanglongbing. Here, we investigated whether association of "Ponkan" mandarin (Citrus reticulata) with volatiles from non-host crops: avocado, passion fruit or coffee, alters host location by the Asian citrus psyllid; and whether they can be temporary hosts for the Asian citrus psyllid. In wind tunnel assays, we found that the association of mandarin seedling with avocado plant volatiles reduced in 30% the number of psyllids sitting on host plants compared to the mandarin alone.
View Article and Find Full Text PDFNeuraminidase inhibitors (NAIs) are recommended for influenza treatment and prevention worldwide. The most widely prescribed NAI is oral oseltamivir, while inhaled zanamivir is less commonly used. Using phenotypic neuraminidase (NA) enzymatic assays and molecular modeling approaches, we examined the ability of the investigational orally-dosed NAI AV5080 to inhibit viruses of the influenza A(H1N1)pdm09, A(H3N2), A(H5N1), and A(H7N9) subtypes and the influenza B/Victoria- and B/Yamagata-lineages containing NA substitutions conferring oseltamivir or zanamivir resistance including: NA-R292K, NA-E119G/V, NA-H274Y, NA-I122L/N, and NA-R150K.
View Article and Find Full Text PDFIn our ongoing efforts to identify baloxavir resistance markers, we demonstrated that the influenza A polymerase acidic (PA) protein E23R substitution is genetically stable, increases baloxavir EC values (13- to 19-fold vs. wild-type), synergizes with PA I38T, and only modestly decreases viral fitness. E23R is, therefore, a potential threat to baloxavir treatment efficacy.
View Article and Find Full Text PDF