Publications by authors named "M F Farnum"

Objective: We present a new system to track, manage, and report on all risks and issues encountered during a clinical trial.

Materials And Methods: Our solution utilizes JIRA, a popular issue and project tracking tool for software development, augmented by third-party and custom-built plugins to provide the additional functionality missing from the core product.

Results: The new system integrates all issue types under a single tracking tool and offers a range of capabilities, including configurable issue management workflows, seamless integration with other clinical systems, extensive history, reporting, and trending, and an intuitive web interface.

View Article and Find Full Text PDF

Timely, consistent and integrated access to clinical trial data remains one of the pharmaceutical industry's most pressing needs. As part of a comprehensive clinical data repository, we have developed a data warehouse that can integrate operational data from any source, conform it to a canonical data model and make it accessible to study teams in a timely, secure and contextualized manner to support operational oversight, proactive risk management and other analytic and reporting needs. Our solution consists of a dimensional relational data warehouse, a set of extraction, transformation and loading processes to coordinate data ingestion and mapping, a generalizable metrics engine to enable the computation of operational metrics and key performance, quality and risk indicators and a set of graphical user interfaces to facilitate configuration, management and administration.

View Article and Find Full Text PDF

Clinical trial data are typically collected through multiple systems developed by different vendors using different technologies and data standards. That data need to be integrated, standardized and transformed for a variety of monitoring and reporting purposes. The need to process large volumes of often inconsistent data in the presence of ever-changing requirements poses a significant technical challenge.

View Article and Find Full Text PDF

Assembly of complete and error-free clinical trial data sets for statistical analysis and regulatory submission requires extensive effort and communication among investigational sites, central laboratories, pharmaceutical sponsors, contract research organizations and other entities. Traditionally, this data is captured, cleaned and reconciled through multiple disjointed systems and processes, which is resource intensive and error prone. Here, we introduce a new system for clinical data review that helps data managers identify missing, erroneous and inconsistent data and manage queries in a unified, system-agnostic and efficient way.

View Article and Find Full Text PDF