Monocarboxylate transporter 4 (MCT-4) is involved in various metabolic processes which are crucial in maintaining cellular pH and energy metabolism, and thus influence the tumor microenvironment. The study is aimed to rationally design effective Small interfering RNA (siRNA) that can silence MCT-4. We utilized a comprehensive workflow integrating multiple tools such as siDirect version 2.
View Article and Find Full Text PDFTuta absoluta is one of the most destructive pests of tomatoes. Chemical insecticides used to control this leafminer harm all organisms, increasing the risk to public health and the environment. Developing natural alternatives, such as bioinsecticides formulated from essential plant oils, is a key strategy to address this problem.
View Article and Find Full Text PDFBackground: The beneficial impact of peritoneal dialysis (PD) catheter placement following cardiopulmonary bypass in young infants has been demonstrated. But the indications to start early peritoneal dialysis are not agreed upon.
Methods: This retrospective single center study was conducted to evaluate the performance of a clinical strategy for early PD start.
Background And Objective: Lung cancer remains a leading cause of cancer-related mortality worldwide, necessitating early and accurate detection methods. Our study aims to enhance lung cancer detection by integrating VGGNet-16 form of Convolutional Neural Networks (CNNs) and Support Vector Machines (SVM) into a hybrid model (SVMVGGNet-16), leveraging the strengths of both models for high accuracy and reliability in classifying lung cancer types in different 4 classes such as adenocarcinoma (ADC), large cell carcinoma (LCC), Normal, and squamous cell carcinoma (SCC).
Methods: Using the LIDC-IDRI dataset, we pre-processed images with a median filter and histogram equalization, segmented lung tumors through thresholding and edge detection, and extracted geometric features such as area, perimeter, eccentricity, compactness, and circularity.
Diabetes is a widespread metabolic illness. Mismanagement of diabetes can lead to severe complications that tremendously impact patients' quality of life. The assimilation of nanotechnology in diabetes care holds the potential to revolutionize treatment paradigms, improve patient outcomes, and reduce the economic burden associated with this pervasive disease.
View Article and Find Full Text PDF