Publications by authors named "M F Abbod"

Quantitative Structure-Activity Relationship (QSAR) analysis greatly enhances the development and research of pesticides. This study employed Multiple Linear Regression (MLR), machine learning (ML), and read-across (RA) approaches to investigate the combined effects of binary mixtures of fungicides on Macrophomina phaseolina. Using the Fixed Ratio Ray Design (FRRD) method, 75 binary mixtures of six frequently used fungicides were generated, with many exhibiting additive interactions as indicated by the Concentration Addition (CA) and Independent Action (IA) models.

View Article and Find Full Text PDF

Sterol Biosynthesis Inhibitors (SBIs) are a major class of fungicides used globally. Their widespread application in agriculture raises concerns about potential harm and toxicity to non-target organisms, including humans. To address these concerns, a quantitative structure-toxicity relationship (QSTR) modeling approach has been developed to assess the acute toxicity of 45 different SBIs.

View Article and Find Full Text PDF

Fungicide mixtures are an effective strategy in delaying the development of fungicide resistance. In this research, a fixed ratio ray design method was used to generate fifty binary mixtures of five fungicides with diverse modes of action. The interaction of these mixtures was then analyzed using CA and IA models.

View Article and Find Full Text PDF

Objective: Our group has shown that central venous pressure (CVP) can optimise atrioventricular (AV) delay in temporary pacing (TP) after cardiac surgery. However, the signal-to-noise ratio (SNR) is influenced both by the methods used to mitigate the pressure effects of respiration and the number of heartbeats analysed. This paper systematically studies the effect of different analysis methods on SNR to maximise the accuracy of this technique.

View Article and Find Full Text PDF

Gait disorder is common among people with neurological disease and musculoskeletal disorders. The detection of gait disorders plays an integral role in designing appropriate rehabilitation protocols. This study presents a clinical gait analysis of patients with polymyalgia rheumatica to determine impaired gait patterns using machine learning models.

View Article and Find Full Text PDF