Similar to the gut microbiome, oral microbiome compositions have been suggested to play an important role in the etiology of autism. However, empirical research on how variations in the oral microbiome relate to clinical-behavioral difficulties associated with autism remains sparse. Furthermore, it is largely unknown how potentially confounding lifestyle variables, such as oral health and nutrition, may impact these associations.
View Article and Find Full Text PDFIntroduction: Intranasal administration of oxytocin presents a promising new approach to reduce disability associated with an autism spectrum disorder diagnosis. Previous investigations have emphasized the amygdala as the neural foundation for oxytocin's acute effects. However, to fully understand oxytocin's therapeutic potential, it is crucial to gain insight into the neuroplastic changes in amygdala circuitry induced from chronic oxytocin administrations, particularly in pediatric populations.
View Article and Find Full Text PDFAlterations in the brain's oxytocinergic system have been suggested to play an important role in the pathophysiology of autism spectrum disorder (ASD), but insights from pediatric populations are sparse. Here, salivary oxytocin was examined in the morning (AM) and afternoon (PM) in school-aged children with (n = 80) and without (n = 40) ASD (boys/girls 4/1), and also characterizations of DNA methylation (DNAm) of the oxytocin receptor gene (OXTR) were obtained. Further, cortisol levels were assessed to examine links between the oxytocinergic system and hypothalamic-pituitary-adrenal (HPA) axis signaling.
View Article and Find Full Text PDF