Publications by authors named "M Eugenia Carlotti"

The development of functional microsystems and microrobots that have characterized the last decade is the result of a synergistic and effective interaction between the progress of fabrication techniques and the increased availability of smart and responsive materials to be employed in the latter. Functional structures on the microscale have been relevant for a vast plethora of technologies that find application in different sectors including automotive, sensing devices, and consumer electronics, but are now also entering medical clinics. Working on or inside the human body requires increasing complexity and functionality on an ever-smaller scale, which is becoming possible as a result of emerging technology and smart materials over the past decades.

View Article and Find Full Text PDF

The possibility of generating regions with different electronic properties within the same organic semiconductor thin film could offer novel opportunities for designing and fabricating organic electronic devices and circuits. This study introduces a new approach based on a novel type of highly processable polymer precursor that can yield two different conjugated polymers characterized by complementary electronic properties, promoting electron or hole transport, from the same starting material. In particular, these multipotent precursors comprise functionalized dihydroanthracene units that can offer several functionalization opportunities to improve the solubility or insert specific functionalities.

View Article and Find Full Text PDF

In this study, we present a thermoplasmonic transparent ink based on a colloidal dispersion of indium tin oxide (ITO) nanoparticles, which can offer several advantages as anti-counterfeiting technology. The custom ink could be directly printed on several substrates, and it is transparent under visible light but is able to generate heat by absorption of NIR radiation. Dynamic temperature mapping of the printed motifs was performed by using a thermal camera while irradiating the samples with an IR lamp.

View Article and Find Full Text PDF

This paper describes a simple model for comparing the degree of electronic coupling between molecules and electrodes across different large-area molecular junctions. The resulting coupling parameter can be obtained directly from current-voltage data or extracted from published data without fitting. We demonstrate the generalizability of this model by comparing over 40 different junctions comprising different molecules and measured by different laboratories.

View Article and Find Full Text PDF

The ability to fabricate components capable of performing actuation in a reliable and controlled manner is one of the main research topics in the field of microelectromechanical systems (MEMS). However, the development of these technologies can be limited in many cases by 2D lithographic techniques employed in the fabrication process. Direct Laser Writing (DLW), a 3D microprinting technique based on two-photon polymerization, can offer novel solutions to prepare, both rapidly and reliably, 3D nano- and microstructures of arbitrary complexity.

View Article and Find Full Text PDF