This paper presents an electron multiplication charge coupled device (EMCCD) based on capacitive deep trench isolation (CDTI) and developed using complementary metal oxide semiconductor (CMOS) technology. The CDTI transfer register offers a charge transfer inefficiency lower than 10-4 and a low dark current o 0.11nA/cm2 at room temperature.
View Article and Find Full Text PDFFor the last two decades, the CNES optoelectronics detection department and partners have evaluated space environment effects on a large panel of CMOS image sensors (CIS) from a wide range of commercial foundries and device providers. Many environmental tests have been realized in order to provide insights into detection chain degradation in modern CIS for space applications. CIS technology has drastically improved in the last decade, reaching very high performances in terms of quantum efficiency (QE) and spectral selectivity.
View Article and Find Full Text PDFA custom CMOS image sensor hardened by design is characterized in a transmission electron microscope, with the aim to extract basic parameters such as the quantum efficiency, the modulation transfer function and finally the detective quantum efficiency. In parallel, a new methodology based on the combination of Monte Carlo simulation of electron distributions and TCAD simulations is proposed and performed on the same detector, and for the first time the basic parameters of a direct CMOS electron detector are extracted thanks to the TCAD. The methodology is validated by means of the comparison between experimental and simulation results.
View Article and Find Full Text PDFThis paper deals with the integration of metallic and dielectric nanostructured planar lenses into a pixel from a silicon based CMOS image sensor, for a monochromatic application at 1.064 μm. The first is a Plasmonic Lens, based on the phase delay through nanoslits, which has been found to be hardly compatible with current CMOS technology and exhibits a notable metallic absorption.
View Article and Find Full Text PDFCMOS image sensors (CIS) are promising candidates as part of optical imagers for the plasma diagnostics devoted to the study of fusion by inertial confinement. However, the harsh radiative environment of Megajoule Class Lasers threatens the performances of these optical sensors. In this paper, the vulnerability of CIS to the transient and mixed pulsed radiation environment associated with such facilities is investigated during an experiment at the OMEGA facility at the Laboratory for Laser Energetics (LLE), Rochester, NY, USA.
View Article and Find Full Text PDF