Correction for ' HEAL9 attenuates cognitive impairment and progression of Alzheimer's disease and related bowel symptoms in SAMP8 mice by modulating microbiota-gut-inflammasome-brain axis' by C. Di Salvo , , 2024, , 10323-10338, https://doi.org/10.
View Article and Find Full Text PDF: Growing evidence highlights the relevance of the microbiota-gut-brain axis in Alzheimer's disease (AD). AD patients display gut dysbiosis, altered intestinal barrier and enteric inflammation that, besides bowel symptoms, can contribute to brain pathology. In this context, the modulation of gut microbiota is emerging as a therapeutical option to halt or slow down central pathology.
View Article and Find Full Text PDFThe autophagy process recycles dysfunctional cellular components and protein aggregates by sequestering them in autophagosomes directed to lysosomes for enzymatic degradation. A basal level of autophagy is essential for skeletal muscle maintenance. Increased autophagy occurs in several forms of muscular dystrophy and in the merosin-deficient congenital muscular dystrophy 1A mouse model (dy3k/dy3k) lacking the laminin-α2 chain.
View Article and Find Full Text PDFSeveral studies have provided interesting evidence about the role of the bidirectional communication between the gut and brain in the onset and development of several pathologic conditions, including inflammatory bowel diseases (IBDs), neurodegenerative diseases, and related comorbidities. Indeed, patients with IBD can experience neurologic disorders, including depression and cognitive impairment, besides typical intestinal symptoms. In parallel, patients with neurodegenerative disease, such as Parkinson disease and Alzheimer disease, are often characterized by the occurrence of functional gastrointestinal disorders.
View Article and Find Full Text PDF