Objectives: To compare the effect of lung recruitment using high frequency ventilation versus volume targeted ventilation on duration of intubation as well as its effect on lung inflammation in preterm infants with respiratory distress syndrome.
Methods: The study was conducted on a total of 40 preterm infants, 34 weeks gestational age or less, having RDS that needed intubation and mechanical ventilation within the first 72 h after their birth at the NICU of Mansoura University Children's Hospital during the period from July 2020 to July 2022. Infants included were randomly assigned into two groups, Group A who were subjected to LRM using HFOV (20 cases) and Group B who were subjected to LRM using VTV/AC (20 cases).
Int J Biol Macromol
September 2024
The present work reports on two approaches to enhance catalase (CAT) activity and its stability by using two simple, green processes. In the first procedure, CAT was transiently exposed to an ionic liquid (IL) in the presence of redox molecules related to CAT structure which resulted in partial denaturation. The other method, which uses high hydraulic pressure (HHP) to partially denature CAT (in the presence of redox molecules), has the advantage of being completely reagentless.
View Article and Find Full Text PDFThe present study was performed to determine if ingesting a blend of probiotics plus amylase would alter the abundance and diversity of gut microbiota in subjects consuming the blend over a 6-week period. 16S and ITS ribosomal RNA (rRNA) sequencing was performed on fecal samples provided by subjects who participated in a clinical study where they consumed either a probiotic amylase blend ( 19bx, 16axg, 18fx, and 16mxg, alpha amylase (500 SKB (Alpha-amylase-Dextrinizing Units)) or a placebo consisting of rice oligodextrin. The abundance and diversity of both bacterial and fungal organisms was assessed at baseline and following 6 weeks of probiotic amylase blend or placebo consumption.
View Article and Find Full Text PDFHesperidin (HSP) is a natural flavonoid glycoside with very low aqueous solubility and a slow dissolution rate, limiting its effectiveness. This study aims to address these issues by creating co-crystals of hesperidin with water-soluble small molecules (co-formers) such as L-arginine, glutathione, glycine, and nicotinamide. Using the solvent drop grinding method, we prepared three different molar ratios of hesperidin to co-formers (1:1, 1:3, and 1:5) and conducted in-vitro solubility and dissolution studies.
View Article and Find Full Text PDF