Publications by authors named "M El-Desouki"

Ultrafast lasers are promising tools for surgical applications requiring precise tissue cutting. Shallow ablation depth and slow rate as well as collateral damage are common barriers limiting the use of laser in clinical applications. Localized cooling with water and/or air jet is known to reduce collateral thermal damage.

View Article and Find Full Text PDF

GaN-based semiconductor optical amplifier (SOA) and its integration with laser diode (LD) is an essential building block yet to be demonstrated for III-nitride photonic integrated circuits (PICs) at visible wavelength. This paper presents the InGaN/GaN quantum well (QW) based dual-section LD consisting of integrated amplifier and laser gain regions fabricated on a semipolar GaN substrate. The threshold current in the laser gain region was favorably reduced from 229mA to 135mA at SOA driving voltages, V, of 0V and 6.

View Article and Find Full Text PDF

The growth of self-assembled, vertically oriented and uniform nanowires (NWs) has remained a challenge for efficient light-emitting devices. Here, we demonstrate dislocation-free AlGaN NWs with spontaneous coalescence, which are grown by plasma-assisted molecular beam epitaxy on an n-type doped silicon (100) substrate. A high density of NWs (filling factor >95%) was achieved under optimized growth conditions, enabling device fabrication without planarization using ultraviolet (UV)-absorbing polymer materials.

View Article and Find Full Text PDF

Currently the AlGaN-based ultraviolet (UV) solid-state lighting research suffers from numerous challenges. In particular, low internal quantum efficiency, low extraction efficiency, inefficient doping, large polarization fields, and high dislocation density epitaxy constitute bottlenecks in realizing high power devices. Despite the clear advantage of quantum-confinement nanostructure, it has not been widely utilized in AlGaN-based nanowires.

View Article and Find Full Text PDF

III-nitride LEDs are fundamental components for visible-light communication (VLC). However, the modulation bandwidth is inherently limited by the relatively long carrier lifetime. In this letter, we present the 405 nm emitting superluminescent diode (SLD) with tilted facet design on semipolar GaN substrate, showing a broad emission of ~9 nm at 20 mW optical power.

View Article and Find Full Text PDF