IEEE Trans Vis Comput Graph
January 2023
Ergonomic risk assessment is now, due to an increased awareness, carried out more often than in the past. The conventional risk assessment evaluation, based on expert-assisted observation of the workplaces and manually filling in score tables, is still predominant. Data analysis is usually done with a focus on critical moments, although without the support of contextual information and changes over time.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
March 2023
We present a method for producing documentary-style content using real-time scientific visualization. We introduce molecumentaries, i.e.
View Article and Find Full Text PDFObjectives: Manual or semi-automated segmentation of the lower extremity arterial tree in patients with Peripheral arterial disease (PAD) remains a notoriously difficult and time-consuming task. The complex manifestations of the disease, including discontinuities of the vascular flow channels, the presence of calcified atherosclerotic plaque in close vicinity to adjacent bone, and the presence of metal or other imaging artifacts currently preclude fully automated vessel identification. New machine learning techniques may alleviate this challenge, but require large and reasonably well segmented training data.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
October 2022
We present Multiscale Unfolding, an interactive technique for illustratively visualizing multiple hierarchical scales of DNA in a single view, showing the genome at different scales and demonstrating how one scale spatially folds into the next. The DNA's extremely long sequential structure-arranged differently on several distinct scale levels-is often lost in traditional 3D depictions, mainly due to its multiple levels of dense spatial packing and the resulting occlusion. Furthermore, interactive exploration of this complex structure is cumbersome, requiring visibility management like cut-aways.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
February 2021
Geological analysis of 3D Digital Outcrop Models (DOMs) for reconstruction of ancient habitable environments is a key aspect of the upcoming ESA ExoMars 2022 Rosalind Franklin Rover and the NASA 2020 Rover Perseverance missions in seeking signs of past life on Mars. Geologists measure and interpret 3D DOMs, create sedimentary logs and combine them in 'correlation panels' to map the extents of key geological horizons, and build a stratigraphic model to understand their position in the ancient landscape. Currently, the creation of correlation panels is completely manual and therefore time-consuming, and inflexible.
View Article and Find Full Text PDF